
Deploying services in the cloud
���

(Day 1 - Server Setup)

1) About this course
2) Recap of linux navigation and Vim
3) Setting up a fresh server
4) Securing a fresh server
5) Administrating user access

2 / 51

About this course ����

�. Most valuable player: a term predominantly used
in American sports to de�ne an excellent
contributor to a team

�. Minimum viable product: a business/startup
term for service that has just enough features to
provide a full service or baseline from which to
develop.

Who is the MVP?

MVP is a well-known acronym, but it has two meanings:

4 / 51

Who is the MVP?
As a data scientist, you may think that your job involves thinking about numbers only. As far as you are concerned, your
job spec does not require any thinking about servers, hosting, networking, etc. Once the dashboard is built, it is
someone else's problem to think about how to get it up and running, right?

Wrong.

Learning more about the technical infrastructure that supports your daily activities and hosts your dashboards makes
you better able to a) appreciate your colleagues who do all that work for you and b) allow you to develop a proof of
concept for a larger service without relying on other team members.

IT professionals are full time employees for a reason. System administration, networking, cybersecurity and database
administration (to name just a few �elds) are deep and complex topics that you can build a full career in.

However, there is a relatively small amount of knowledge that can take you a long way. What we aim to do is harness
this knowledge to create a minimum viable product for you as a data scientist to be able to run analytical
environments, databases and dashboards that are always on and accessible to other potential users. You are then able
to stand on your own two feet, without any being overly reliant on other (overworked) team members.

Then YOU are the MVP.

5 / 51

Course objectives
On completion of the course, you should feel comfortable to do the following:

• Start from scratch with a fresh Linux server
• Secure your server from common cybersecurity threats
• Create and manage users and �les on your server (basic system administration)
• Deploy a database with structured access for multiple users
• Populate a database
• Deploy RStudio as an analytical environment with secured remote access

A brief overview of various roles this covers
• System administrator: manage health of the server, manage access and networks (bash)
• Database adminstrator: maintain integrity and database function (SQL)
• Development Operations (DevOps): deploying services for effective access (bash, Docker)

6 / 51

Thursday 9 May (09:00 - 10:30):

• Course introduction.
• Introduction to cloud and VPS.
• Install software for course.
• Linux basics review.
• Adding users to the server and to groups.

Thursday 9 May (11:30 - 13:00):

• Setting �le and directory permissions.
• Setting up SSH keys.

Thursday 9 May (14:00 - 16:00)

• Setting up �rewalls with iptables
• Access and error log tracking.
• Setting up Fail2Ban.

Session Breakdown: Setup

7 / 51

Friday 10 May (09:00 - 10:30):

• Setting up a database as a service.
◦ Recap Docker.
◦ Setting up PSQL in Docker.

Friday 10 May (11:30 - 13:00):

• Setting up a database as a service.
◦ uploading data to the database.
◦ adding users to the database.

Friday 10 May (14:00 - 16:00)

• Deploying RStudio as a service.

◦ Installing RStudio server.
◦ Connecting RStudio to a domain using Nginx.
◦ Connection RStudio to the PSQL database in the

container.

• Bonus: monitoring Linux host metrics with Prometheus
and Grafana.

Session Breakdown: Setup

8 / 51

What is a server
A server is actually just a computer. Just like a laptop, it has core components of CPU, RAM and storage. However, a
server is distinct from your typical laptop in that it is built with parts that are designed to function 24/7. It is also
typically set up to allow direct incoming connections more readily than a laptop.

Many things are technically indistinguishable from computers as we commonly know them - mobile phones, servers,
even cars and fridges. However these computers are typically named after the purpose that they serve. So think of a
server more literally as a computer that serves you outputs to your inputs.

9 / 51

Cloud providers
Due to the increases in processing and storage capacity and innovations in software development called a hypervisor,
it is possible to partition a single machine to host multiple virtual machines on a single server. Of course, cloud doesn't
actually mean cloud. What cloud means is remote access to what is typically a virtual machine located in a huge data
centre.

Cloud services can be expensive, but they provide many bene�ts to a situation where you are looking to test out a a
service (like a dashboard), in that they offer easily scalable and accessible computing resources. Small machines are
often reasonably priced, and you are able to terminate the services at any time and only pay for the time that you used.

10 / 51

Your cloud server
There are many VPS providers. The one we work with most often is Rackzar. The physical servers are located in data
centres in Cape Town and Johannesburg. To turn you all into MVPs, we have acquired servers for you all to use to
practise the training content.

11 / 51

https://rackzar.com/vps
https://rackzar.com/vps

Login to your server

Setting up VS Code
We are going to use the Visual Studio Code source-code editor. The �rst step is to install VS Code which you have
hopefully already done.

After opening VS Code we'll have to install the extension Remote Explorer which will help us access our VPS via SSH.
SSH stands for Secure Shell, which uses asymmetric cryptography to secure the content of your session. This means
that if anyone is spying on your session somehow, they won't be able to make any sense out of what they see because
it will be encrypted.

13 / 51

Con�guring Remote SSH access
Before accessing our VPS using the Remote Explorer's SSH functionality, we have to give VS Code the details for how to
access our VPS. We do this in the con�guration �le, typically known as a con�g �le.

After installing Remote Explorer, navigate to your Remote Explorer, click on the cog next to the SSH tab (as illustrated
below). This should open a menu in the top of the window where you can access your con�g �le.

14 / 51

Adding details to the con�g �le
After opening the con�g �le, you'll have to add the following information. In this case your_server_name is a name that
you choose to refer to your server in VS Code's Remote Explorer (give it a descriptive name). End your server name off
with _root the reason for doing this will become clear later on. your_server_ip is the IP-address of your VPS.

Save the con�g after adding the information and close it.

Host your_server_name_root
 HostName your_server_ip
 Port 22

User root

15 / 51

Accessing your server
You should now be able to see your server (with the name you gave it) when you click refresh on your Remote Explorer
tab and then expand the SSH tab. You can connect to your server by hovering over it and selecting to connect to it in
the current session or to connect to it in a new session.

16 / 51

Logging in to your server
You should see options for the software of the server and choose the Linux option.

You should then be prompted for you password. Type your password and press the Enter key.

17 / 51

Accessing the terminal
You should now be able to see that you are connected to your server via SSH in the bottom left corner of your window.

We can access the terminal by using the shortcut CTRL + backtick which is usually located below the ESC key on your
keyboard.

This should open your terminal for root@your_server_name . While VS Code has many helpful supporting functions, a
terminal session is all that we need to get started on setting up our server.

18 / 51

Linux, Less and Vim

The command line
Whenever we talk about black screen, command line or shell we are essentially talking about the interface that takes
input from the keyboard and sends it to the operating system (OS). Every button click on a GUI is translated into some
sort of command - using the terminal just allows us to skip through the front end.

Almost all Linux distributions supply a shell program from the GNU Project called bash . This is going to be the primary
way that we manage our server.

Try these basic commands:

date

free �h

cal

20 / 51

Navigating Linux
Moving around Linux can take a while to get used to, however with repetition comes familiarity. You should already
have some exposure to this system from the Foundations training.

Just like any Windows system that you will be used to, all Unix-like systems use a folder structure that follows a tree
structure. The top-most level is called the root directory. You can list the contents of a given directory using tree or ll

Obviously looking at �les in your home directory doesn't take you very far. We need to be able to navigate the �le
system in a quick and ef�cient manner. The cd command in Linux is a powerful way to navigate the tree folder
structure that is the �le system.

21 / 51

Navigating Linux
The two main methods for traversing the tree is: (1) Absolute Paths and (2) Relative Paths:

• Absolute Paths begins with the root redirectory / and expands to the folder you are interested in: /home/hanjo/
Data

• Relative Paths starts at the working directory and starts navigation from there. These paths have a special
notation, a single dot (.) and a dot dot (��). The . notation refers to the working directory, and the �� notation
refers to the working directory’s parent directory.

When changing directories in Linux, TAB is your best friend!

Navigate to the /usr/bin directory and list all the �les.

22 / 51

Notes about �lenames in Linux
Filenames in Linux are quite special and if you have worked closely with someone who works in Linux, you would have
noticed some things. First and foremost:

• NEVER use a space in �lenames use an underscore (_) instead - thank me later ;-)
◦ ex. this file name sucks.txt where this_is_much_better.txt

• Filenames that start with a . are hidden �les. The ls command will not list these unless you use a parameter ls

�a . These �les usually relate to con�guration settings.
◦ ex. .bashrc .

• CASE MATTERS, so dont ever use Capitals for folders or �lenames - it gets confusing.
◦ ex. This/path/IS/different/ . from /this/path/is/different/

• Linux does not have any concept of "�le extensions". So remember to name your �les in an appropriate manner if
you would like them to be readable by the correct application.
◦ ex. mypdffile and mypdffile.pdf is the same

See this presentation by Dr. Anna Krystalli for further tips on �le naming.

23 / 51

https://annakrystalli.me/rrresearch/03_filenaming.html#1
https://annakrystalli.me/rrresearch/03_filenaming.html#1

Creating folders
Apart from knowing how to navigate folders, we must also know how to create �les and folders.

The basic commands for this is:

• Create folder

mkdir scripts
mkdir scripts data analysis

24 / 51

Viewing contents of �les
To view the contents of a �le, we use a program called less . This is an important program to use, as it allows for the
viewing of a �le without running the risk of inadvertently changing some unknown but critical parameter in our
system setup con�g. A useful principle to live by when creating or managing any kind of software, but especially server
setup is:

I am an idiot, and I probably did something stupid that will break everything

Committing this to heart will force you to proceed with caution and write code that aims to be as idiot-proof as
possible.

The only way to write good code is to write tons of bad code �rst. Feeling shame about bad code stops you
from getting to good code.

— Hadley Wickham

25 / 51

Viewing contents of �les
Lets start by looking at the users on the system:

less /etc/passwd

Navigation:

• G - Move to the end of the text �le
• g - Move to the beginning of the text �le
• 10g - Move to the nth line
• q - Exit

Forward Search:

• /characters - Search forward
• n - Search forward
• N - Search backwards

26 / 51

Editing �les
Browsing the server contents under the protection of less is all well and good, but if we want to get anything done we
will have to start actually editing and writing �les. To do this, we will use vim , a command-line �le editor. vim is a
critical tool to know when doing system adminstrator tasks, as you may not necessarily have access to richer tools like
VS Code in times of crisis!

27 / 51

Basics of editing a �le
�� Follow my commands before typing. Do not type anything yet!

Remember, if something bad happens just press ESC a couple of times and then exit VIM with :q!

vim owner_information.txt

• In VIM, every keystroke is a speci�c command, this type of editor is known as a modal editor.
◦ VIM starts by going into command mode, which means it expects commands, NOT input text.

To type something we must go to Insert Mode. To do this, type i . You should see the following at the bottom:

�INSERT��

Now, type the following:

[owner] James Scott

Save and exit by pressing ESC and :wq

28 / 51

Basics of editing a �le
What happens if you happen to have made a mistake? To delete a �le, use the rm command.

�� In Linux, when you delete the �le is gone forever. So be careful!

rm owner_information.txt

With the basics refreshed, we are now ready to get started with some sysadmin.

29 / 51

Creating users

Root is powerful!
root is a superuser and # indicates the root user is
being used at the command prompt
user@machine:location# (normal users have a $
instead of #). Working with root exclusively can
compromise security or cause other bad things to
happen. Linux is notoriously open and allows the
user a lot of freedom.

The root user (#)

31 / 51

On a Linux system a Superuser refers to a user who has unlimited
access to the �le system with privileges to run all Linux commands. The
key difference compared to root users is that sudo users must preface
commands they wouldn't ordinarily be able to execute with sudo , and
must enter a password. root users can execute any command with no
warning given.

• This responsibility is mostly given to experienced SysAdmins. The
reason being there is no "take-backsies" in linux. Once a command
has been executed under sudo (superuser do) , there is almost
never a way to reverse the execution (ex. deleting a �le).

• The Superuser/Root is also responsible for setting up security and
thus, limiting the power to a single (or very few individuals is
preferred).

Different type of users

Superuser
With great power comes great responsibility!

32 / 51

Setting up a new user
It is a good idea to create a separate user with sudo privileges that you use for day-to-day tasks. Not only does it add
some level of protection by forcing you to use sudo and enter your password, it also adds allows you to protect your
server in the cybersecurity sense, which we will touch on later.

Use the adduser function to add a user called [your name]. You will have to create a password for this user, which will
be used later. Make sure to create a secure password that is not easy to brute-force! Use an online password generator
like LastPass, and ideally store this password in some sort of password manager.

You don't have to �ll in the additional information, but you're welcome to do it if you feel like it.

33 / 51

https://www.lastpass.com/features/password-generator#generatorTool
https://www.lastpass.com/features/password-generator#generatorTool

Superuser privileges
Since we're still going to need some superuser functionality, we should grant our newly created user superuser
privileges. We can do this by adding the user to the sudo group. This will be done using the usermod function, which is
short for for modify a user account. Let's have a look at what this function does using our best friend in the whole
universe, man .

Now that we have a grip of what usermod does, we can put it into practise:

• We check which groups the user is a member of using id
• We use the usermod function with the �aG option

34 / 51

Securing user access with SSH keys
An SSH key is a way of establishing a secure connection with a server. SSH keys are similar to passwords, but are often
less susceptible to brute force attacks as they are longer. If you think of a password as a secret phrase you say to a
guard to allow you access to your house, SSH keys are the equivalent of using a key that only you have to a locked gate.

SSH keys come in private-public key pairs. The public key can be thought of the lock in the gate that the key is �tted to.
SSH security is driven by the technique asymmetric cryptography, as is explained here.

35 / 51

https://youtu.be/0ctat6RBrFo?si=yXn9oNF4-YXf1Fjy
https://youtu.be/0ctat6RBrFo?si=yXn9oNF4-YXf1Fjy

Generating public-private key pairs
Each user can generate their own SSH key. To create a new SSH key for our user, switch using su [user_name] (su =
switch user). You will have to enter the password that you just generated - hopefully you have kept it somewhere.

Once you have switched, your should see your prompt shift to re�ect your new user. Run cd to make sure that you are
in your home directory. We are also going to need a directory to store our keys in. The default directory is called .ssh/ ,
and it should be created in our home directory.

Once you have done that, run the following to generate your SSH key pair:

ssh�keygen

This will prompt you to provide a name for the resulting �les. The default name is id_rsa , but you can use something
more intuitive like cloud_training_key . Make sure to add the relative �le path (.ssh/) to make sure that it lands in the
correct place.

36 / 51

Authorising SSH keys
We now have a valid key that works in a lock. The only thing that remains is to �t it to the gate of our house. The way
this works in practise is that when you attempt an SSH connection using your name, the ssh service looks for a �le
called authorized_keys in .ssh/ in your home directory. If the private key that you supply matches a public key in this
�le, your access is granted. So all that remains is to add our public key to this �le:

cat cloud_training_key.pub > authorized_keys

Double check that you have added the correct key to the authorized_keys �le using less . You should see a comment
at the end of the �le that looks like james@VM01 .

Finally, we are going to need to store our private key on our local laptop. The technique here is low-tech: paste the
contents of the key using cat cloud_training_key , and copy into a text �le. Save this �le in a sensible place!

37 / 51

Logging in with SSH key
We can now recon�gure our VS Code Remote Explorer to access our server via our new user and the SSH keys we just
generated. It is easier to just copy and paste the �le path from your �le explorer, especially on Windows.

Host your_server_name
 HostName your_server_ip
 Port 22

User [user_name]
 IdentityFile "path/to/your/private/key/private_key_name"
 IdentitiesOnly yes

Once that is done, reattempt login using your new user.

38 / 51

Securing our server
We should now be all set to start running sysadmin tasks. Our �rst concern will be to prevent any unwanted logins from
our server. The ssh service keeps a record of all login attempts - have a look at the �le /var/log/auth.log . Be shocked.

Cybersecurity is another deep and complex �eld that can swallow up an entire career. As practitioners of MVP services,
it is not worth attempting to safeguard your services against the highest-grade cyber attacks. The most watertight and
easy to implement defensive solution is probably to diligently back up your code and data.

Some general principles, however, do apply. In general, the biggest risk to system security is human error. This means
that our �rst port of call should be analyse our own behaviour for security concerns. Some typical human errors are:

• Creating simple passwords
• Sharing passwords
• Clicking or downloading anything from a strange/suspicious link
• Downloading unaccredited packages

39 / 51

Securing our server
All that said, it would be frustrating to have to set up our server over and over after falling victim to script�kiddie
attacks.

We can implement some protocols that will help to protect our fresh server from unwanted brute-force or DoS attacks.
These are:

• Disabling root login
• Disabling password login (SSH key login only)
• Enabling a �rewall
• Enabling Fail2Ban, a software that limits the number of unsuccessful login attempts any one IP address can make.

40 / 51

Securing SSH

Disabling root and password logins
The con�guration settings for the ssh service are stored in a �le called sshd_config in the /etc/ssh directory. Before it
starts, the ssh service reads this �le in order to know how it should function.

Before you edit, make a copy of the �le and save it as sshd_config.dist (in case something goes wrong while editing
the original). Then, edit sshd_config using vim in the following areas so that the following three options are set to 'no'
(check that the lines are not commented out):

• PasswordAuthentication no
• PermitRootLogin no
• UsePAM no

PAM stands for Pluggable Authentication Modules, which is a more recent addition to SSH which allows custom
authentication methods to the ssh service. This can override other settings if left speci�ed as yes.

42 / 51

Disabling the root user and password login
After the edits from the previous slide, we need to restart the ssh service.

WARNING NOTE ��: If you restart the service without checking that your SSH Key login works, you might lock yourself
out of the server. Do NOT restart the service without checking that you can login with your SSH key. ��

When you are ready, restart the service with sudo systemctl restart ssh

DO NOT CLOSE YOUR CURRENT TERMINAL. Keep your current session open and open an additional session to check if
you can log in successfully, just in case.

Test that you cannot use root to login, and test that you are not offered a chance to enter a password when not
authenticating with an SSH key. This cuts out a good deal of brute-force risk. We will get back to more security
measures later.

43 / 51

Managing permissions

Permissions
Now that we are feeling relatively sure that our new machine won't be torn to pieces by a 5 year old, we can turn our
attention towards one of system administrators' biggest headaches: permissions.

Why are permissions important?
Imagine you are enjoying an incredible Sunday lunch with your family. You have savoured a delicious meal, and several
mubimba. Nature calls, and you decide to leave your current Primus Nini on the �oor in the middle of the passage. As
you return, your 8 year old nephew runs down the passage and knocks your primus all over the �oor. You are
devastated.

A question: do you have any right to be angry with your nephew?

45 / 51

Permissions
These are the sorts of questions that a system administrator must think about. You cannot really be angry with your
nephew, because they did not know any better and they did not act with malice. In the same way, you as a system
administrator cannot grant sudo privileges to a Linux user with the total experience of two weeks and not expect to
take the blame for the inevitable system crash that ensues when the user gets lost in the root directory.

Setting permissions refers to the selective granting of the ability to read, write or execute �les or scripts for according
to what is required for each user to do their job. Correct setting of permissions can offer two things:

• peace for mind for the system administrator that the server will not be compromised by a mistake by a user who
doesn't know better

• peace of mind for the user that they will not compromise the server by making a mistake

46 / 51

Understanding permissions
There is a common saying in the Linux community:

Everything in Linux is a �le

This is largely true. Word documents (encoded), system con�guration �les and csvs are at the end of the day all just raw
characters in a plain-text �le. While the reality is a bit more complex, looking at things from our MVP perspective it
makes it easier to understand the 3 basic permissions as follows:

• read (r): the ability for a user to see what a �le contains
• write (w): the ability for a user to make edits to the contents of a �le
• execute (x): the ability for a user, via the use of a program (like python or R) to execute the contents of the �le

These permissions can be set independently for any given �le. This means that a �le can have any combination of
these three permissions.

47 / 51

Understanding permissions
Only being able to grant one set of permissions per �le is quite limiting. Imagine if you have a sensitive dataset on the
server that should only be read by a select few. These users would then have to be granted sudo permissions to read
the data. This is in�exible and unhelpful. Fortunately, Linux provides a way for us to assign a set of permissions to
different kinds of users:

• owner: typically the creator of the �le, the owner refers to one user only. Every �le has an owner.
• group: a set of users tied together by membership of a de�ned group. Every �le has a group assigned to it, either

by default or manually after creation
• other: any user that is not the owner or a member of the assigned group

To test out privileges, make a test �le in your home directory called hello.sh that looks like this:

�� /usr/bin/bash
echo hello

48 / 51

Understanding permissions
In general, the �le permissions are reported as follows:

The ll command is very helpful in understanding the privileges assigned to a �le. Run it on your home directory, and
the relevant entry should look like this:

�rw�r��r�� 1 james james 28 May 8 21�57 test.sh

What does this imply for the permissions for our new �le?

49 / 51

Changing permissions
As the �le extension implies, this is a shell script that needs to be executed. What happens if we try to execute via ./
test.sh ?

As expected, permission is denied. In order to edit the permissions so that we can do so, we must make use of the
chmod command.

chmod has many different speci�cations, but the simplest is the following:

• start with chmod
• add the initial of the user group that you want to edit permissions for (u,g,o)
• de�ne if the permissions are to be added (+) or removed (-)
• add the types of permissions
• �nally, specify the �le or �les it should be applied to

In this case, we would specify chmod u�x test.sh . Once this is done, retrying ./test.sh is successful. You can also
notice that the appearance of the �le when executing ll has changed.

Using this pattern, assign permissions to test.sh so that the owner has read permissions only, the group has write
permissions only, and other users have execute permissions only.

50 / 51

Application
Determining privileges is best done on a case-by-case basis. Most of the time, Linux will handle permissions for you
with little input needed. However, a good application of some permissions magic can be shown in the creation of a
central data directory on the server. This directory will grant access to a data storage facility where only members of a
group can read and write the data, and others can only read. This involves the following:

�. Create a group called analytics using groupadd
�. Create the directory /home/data
�. Set the ownership to james:analytics
�. Set the sticky group to analytics using chmod g�s
�. Create test users and assign them to group analytics to test

51 / 51

Securing your server

1) What is a �rewall
2) iptables as a �rewall
2) Logs to monitor our system
3) Fail2Ban for protection

2 / 29

Firewalls ��������

Firewalls
A �rewall is simply a network security system that monitors and controls incoming and outgoing network traf�c based
on speci�ed criteria.

Technically anyone with a internet connection can send packets to our server. A �rewall checks the packets
against a set of rules and then decides whether to allow them to enter the system or to reject them.

4 / 29

What are packets?
Packets are simply smaller segments of larger messages. They increase the ef�ciency and reliability of transmitting data
over a network.

Once these packets reach their destination the receiver reassembles them into the larger message.

5 / 29

Firewalls with iptables

iptables

Overview
The tool we use to set up our �rewall in this course is iptables . It will enable us as the system administrators of our
VPSs to con�gure the IP packet �ltering rules for the Linux kernel �rewall.

iptables organises these �lters into different tables (hence then name) which contain chains of rules which determine
how network packets are treated.

7 / 29

iptables

Chains
An iptables chain is a collection of rules that are compared, in order, against packets that share a common
characteristic (such as being routed to the Linux system, as opposed to away from it). The most important built-in
chains for our purposes are the INPUT, OUTPUT, and FORWARD chains (speci�cally in the �lter table):

• The INPUT (incoming packets) chain is traversed by packets that are destined for the local Linux system after a
routing calculation is made within the kernel (i.e., packets destined for a local socket).

• The OUTPUT (outgoing packets) chain is reserved for packets that are generated by the Linux system itself.
• The FORWARD (routed packets) chain governs packets that are routed through the Linux system (i.e., when the

iptables �rewall is used to connect one network to another and packets between the two networks must �ow
through the �rewall).

8 / 29

iptables

Matches
An iptables match is a condition that must be met by a packet in order for iptables to process the packet according
to the action speci�ed by the rule target. We discuss targets on the next slide.

For example, to apply a rule only to TCP packets, you can use the --protocol match.

The table below displays some of the most important iptables matches, but we can consult the man page for more
information.

9 / 29

iptables

Targets
A target speci�es the action to take should the matching criteria be met. The most important iptables targets are
listed in the table below.

10 / 29

iptables
iptables rules are merely user de�ned commands that manipulate the network traf�c.

Setting rules
�. Only the superuser can add rules to iptables .
�. Call the iptables utility.
�. Specify what action to take (Append, Delete, Replace, Check or List) and for which chain (in this chase INPUT).
�. Specify a matching component (in our case the IP address).
�. Specify the target.

11 / 29

iptables

In practice
We can view the current iptables rules with line numbers for each rule using the command below. Note that if we
don't specify the �t option in iptables the default table (�lter) is selected.

What can you see?

• Which chains are visible?
• What is the default target for each chain?

12 / 29

iptables

In practice
Let's de�ne some basic rules to control the traf�c �ow to and from our machine in the network.

Append a rule to the INPUT chain that accepts incoming packets if they are related to already established
connections.

sudo iptables -A INPUT �m state ��state ESTABLISHED,RELATED �j ACCEPT

Append rules to the INPUT chain that accept loop-back connections and pings (notice the use of
comments).

sudo iptables -A INPUT �i lo �m comment ��comment "Allow loopback connections" �j ACCEPT
sudo iptables -A INPUT �p icmp �m comment ��comment "Allow Ping to work as expected" �j ACCEPT

Allow SSH connection.

sudo iptables -I INPUT 4 �p tcp �s 0.0.0.0/0 ��dport 22 �m comment ��comment "SSH access" �j ACCEPT

13 / 29

iptables

Exercise
Let's have a look at the rules that we've de�ned so far.

How can you change the SSH rule to ensure that only you can connect via SSH? Consult the man page and make the
necessary adjustment (TIP: you can google "what's my ip" to get the IP address of your local machine).

14 / 29

10�00

iptables

In practice
The default policy of the INPUT chain is still set to ACCEPT. This means that if a packet traverses this chain and is not
matched by any of the rules, the packet will be accepted. We need to change that to allow only the connections
speci�ed already.

sudo iptables -A INPUT �m comment ��comment "Drop all other connections" �j DROP

15 / 29

iptables

In practice
We are making great progress towards securing our server! Another important step that we need to take is to make
these iptables rules permanent.

INSTALL iptables�persistent

sudo apt�get install iptables�persistent

After each edit to the iptables rules run the following to ensure that the rules are loaded each time the server is
rebooted:

/sbin/iptables�save > /etc/iptables/rules.v4
/sbin/ip6tables�save > /etc/iptables/rules.v6

16 / 29

Logs to monitor
our system

htop

18 / 29

iftop

19 / 29

Checking the log �les
System logs deal with exactly that - the Ubuntu system - as opposed to extra applications added by the user. These logs
may contain information about authorizations, system daemons and system messages.

Authorization log

Keeps track of authorization systems, such as password prompts, the sudo command and remote logins.

/var/log/auth.log

Daemon Log

Daemons are programs that run in the background, usually without user interaction. For example, display server, SSH
sessions, printing services, bluetooth, and more.

/var/log/daemon.log

20 / 29

Checking the log �les
Debug log

Provides debugging information from the Ubuntu system and applications.

/var/log/debug

System logs

Contains more information about your system. If you can’t �nd anything in the other logs, it’s probably here.

/var/log/syslog

I think you can start seeing some pattern here... Some applications also create logs in /var/log/ :

• rstudio�server/ , nginx/ , letsencrypt/

21 / 29

Analysing log �les
There are multiple programmes to analyse web logs (such as goaccess), but for now, lets do some basic analysis:

First and foremost, become root - sudo su . Then open up /var/log/auth.log .

See if you can �nd yourself logging on: grep "hanjo" /var/log/auth.log | less .

Lets also have a look at the �les for a bit... tail �f /var/log/auth.log

22 / 29

Jip....

23 / 29

Fail2Ban ����������

Cybersecurity
A complex topic - we are often overwhelmed with news of data breaches, which often have real implications for our
data subjects. Obviously we would like to take some precautions to avoid our services being disabled. However, there
are a few things we need to remember as Data Scientists running small applications in the cloud.

�. We are not full time system engineers or security experts!
�. Our concern for security should be in proportion to how con�dential or important the data/services hosted by our

service is.

Therefore - if you are running a dashboard based on publicly available survey data, then your most airtight security
strategy is to have all your code backed up (hopefully on GitHub, but that's a story for another day).

The cloud is a huge system protected by seasoned professionals. As such, the biggest risk to our system is probably us!
What does this mean?

• don't fall for phishing attacks
• don't download strange programs
• only download recommended/trusted libraries
• don't throw passwords around!
• use secure passwords!

25 / 29

Protecting against common cybersecurity threats
That being said, there are a signi�cant number of what are commonly known as 'script-kiddies' who are throwing bugs
all over the internet

Brute force attack

• These hack attempts are in essence unsophisticated - all they involve is trying all possible combinations of your
password in an attempt to gain access to your server.

Denial of Service (DoS) attacks

• This involves your server being bullied by a larger computer bombarding your machine with so many requests
(even unsuccessful requests) that you end up not being able to use it at all.

26 / 29

For linux and SSH access, we are going to implement
this using Fail2Ban , which is an open-source, free-
to-use tool:

sudo apt install fail2ban
fail2ban�client ��version

Fail2Ban
Fortunately, there is a relatively simple and easy to deploy service that helps you to mitigate these attacks. It is a
technique that you are no doubt already familiar with from many internet login or even phone passwords. The simple
solution is to only allow a user a set number of attempts to enter a password, and after that number of unsuccessful
attempts block their attempts for a set amount of time.

27 / 29

Fail2Ban
Fail2Ban has two components - fail2ban�client , which allows the user an easy interface to con�guration �les, and
fail2ban�service which refers to the actual program doing the work behind the scenes.

Fail2Ban reads through log �les and interprets them in such a way that it is able to identify machines (IP addresses)
that unsuccessfully attempt to SSH in and add them to a jail for a certain period of time.

The default location for all things Fail2Ban is /etc/fail2ban/ . In the jail.d/ directory, you will �nd sshd.conf :

• port : which port is being targeted for connection attempts?
• filter : which service do we want this jail to focus on?
• logpath : which logs should be read?
• maxretry : how many unsuccessful attempts should be tolerated?
• bantime : how long should the IP be chucked in jail for? Measured in seconds

Lets see if there is any IPs in jail? fail2ban�client status sshd

• You can also "unban" someone: fail2ban�client set {JAIL} unbanip {IP} .

...later we will secure our cloud DB!

28 / 29

Fail2Ban
It might be good to ensure that your IP doesnt get blocked (this is usually good when you have a �xed IP):

You can add speci�c IPs you wish to ignore by adding them to the ignoreip line. This won’t ban the localhost by default.
Adding the ignore list may be to your bene�t if you tend to frequently leverage an individual IP address:

• vim /etc/fail2ban/jail.local

[DEFAULT]
"ignoreip" can be an IP address, a CIDR mask or a DNS host. Fail2ban will not
ban a host which matches an address in this list. Several addresses can be
defined using space separator.

ignoreip = 127.0.0.1/8 123.45.67.89

Want to whitelist IPs only for speci�c jails? Utilize the fail2ban-client command. Just switch JAIL with your jail’s name,
and 192.0.0.1 with the IP you intend to be whitelisted.

fail2ban�client set JAIL addignoreip 192.0.0.1

29 / 29

DevOps
(Day 2 - Deploying services)

1) Agenda
2) Agenda
3) Property Market Analysis

2 / 33

Basics of networking
Before we dive in, it would be useful to cover some basic networking. Otherwise you will just be fumbling around in the
dark.

What are IP addresses? What are ports?

3 / 33

A great quote:

A best practice is an optional investment in your product or
system that should yield better outcomes in the future. Best
practices enhance security, prevent con�icts, improve
serviceability, or increase longevity. Best practices often
need advocates because justifying the immediate cost can
be dif�cult.

Docker and DevOps

4 / 33

Docker and DevOps
In a nutshell, Docker is a container engine that allows developers like yourselves to build production-grade
applications in isolated, stable and easily portable environments.

Again, in English: Docker allows you build an application that will run anywhere* and will not interfere with any other
program running on your machine (*anywhere there is Docker, which is everywhere).

5 / 33

Why Docker?
This �gure below illustrates the web of dependencies created by running multiple applications natively:

Docker cleans up this web by running each application inside a container:

6 / 33

Why Docker?
Docker was inspired by the adoption of a standard shipping container by the shipping industry. Creating standard
dimensions for carrying goods increased the ef�ciency of freight and the shipping industry took off. For more details
see this keynote from the founder of Docker.

This should by now be ringing bells - ensuring that your services are run in containers means you can easily "ship"
them to another service with little to no additional con�guration required to get things up and running on the other
side.

7 / 33

https://youtu.be/3N3n9FzebAA?si=TIhdkztEoAv9gNwM
https://youtu.be/3N3n9FzebAA?si=TIhdkztEoAv9gNwM

Technical difference - JARGON WARNING:

• A Docker container is a clever way of isolating operating system
processes. Although many different containers could be running on
a system, at the end all their processes are running on the same
operating system and in the same kernel.

• Virtual Machine is just what it claims it is. It is a virtual simulation
of a physical computer, which means it has its own specially
partitioned and ringfenced system resources in addition to
software.

A quick note on Virtual Machines
Many of you will have heard of Virtual Machines, and you might be thinking that Docker is a Virtual Machine. Indeed,
they can serve the same function as a Docker container. However there are some key differences that you should be
aware of.

The key difference is that Docker containers
don’t use any hardware virtualization. This

makes them much more ef�cient that a Virtual Machine.

8 / 33

Quick SideQuest ������
Solved by adding these two lines in /etc/resolv.conf

nameserver 8.8.8.8
nameserver 8.8.4.4

Then

systemctl daemon�reload
systemctl restart docker

9 / 33

Installing Docker
The online Docker user manuals, called Docker Docs, is incredibly comprehensive repository for all things Docker
related, and it should be your �rst point of reference when you run into trouble!

You can �nd a guide to installing Docker here. Follow this now!

Once you're done, check the results of docker ��version to see if it works.

With con�rmation that Docker is successfully installed, it's time to spin up a Docker for the �rst time.

docker run hello�world

What happens?

10 / 33

https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

The Docker group
You should see that your docker run hello�world attempt will fail with this error message:

docker: permission denied while trying to connect to the Docker daemon socket

While this is likely the �rst time you will have run into this error, it most certainly will not be the last!

Docker controls the ability to interact with images, containers and anything else Docker related via the docker group. If
you aren't assigned to this group, whatever docker command you run you will be met with the same fate. Use id to
check what groups have been assigned to you, and then use sudo usermod �aG docker $USER

• usermod is the command to (surprisingly) modify a user's characteristics
• �aG is the shorthand for add Group
• docker is the name of the group
• $USER is the system variable that identi�es the current user in the shell

Once you have done this, relog into your machine and check that everything has worked by repeating id . If you don't
relog you won't see any changes, as your user information is only re-evaluated once a new shell session is started.

11 / 33

First Docker
Now that annoying admin is out of the way, we can actually get to running our �rst docker. What happens?

docker run hello�world

12 / 33

Understanding Docker
What has just happened here is not particularly clear, and raises more questions than answers. What makes this any
different from a plain old echo ? What is an image? What is Docker Hub? Let's try and clear this up by getting to grips
with some concepts that are core to the way Docker works.

To recap: Docker allows you to create an isolated environment for an application (in this case, think database!). The
easiest way to think about this is as a second computer that has completely different packages installed it, that can be
upgraded or deleted entirely independently from your machine. But how is this environment de�ned? What packages
are installed in it? What operating system is it running?

All of these questions are de�ned in a Docker image. You can think of this as a list of speci�cations that outline the
software setup of a computer. Note that it does not ever mention anything about hardware allocation, since this is not
a Virtual Machine!

Now then: a Docker container is the actual running isolated environment. Every Docker container is based on a Docker
image. You can have multiple Docker containers running from the same image, but you cannot have one Docker
container based on more than one image.

Fortunately, you don't have to build an image from scratch. Docker Hub is an online repository for pre-made images
free for anyone to use!

13 / 33

https://hub.docker.com/
https://hub.docker.com/

In this case, our �avour of DB is going to be
PostgreSQL (PSQL). PSQL is a shining example of the
power of open-source projects and is a common
choice for many software developers as a data
storage facility.

PSQL container
A database is probably one of the most important and ubiquitous services supporting any application or server.
Databases come in many different �avours, but since we are focusing on analytics here, we are going to be using a
relational database, which records data in a familiar tabular format, and is very good at maintaining connections
between different, but linked, datasets.

14 / 33

PSQL container
Fortunately for us, some kind set of strangers on the internet (sounds like a misnomer, doesn't it) has developed a
PSQL container that we can just use for free to set up our own PSQL db... How nuts is that?

Let's pull this image. It's a good idea to decide on the latest version there and then and set that as the version of the
container image that you are using to prevent any breaking changes in the future (although this is just a slight
possibility)

docker pull postgres:14.11

15 / 33

https://hub.docker.com/_/postgres
https://hub.docker.com/_/postgres

PSQL container
On the Docker Docs page, they straight away give us the smallest command needed to get this container up and
running. Let's adapt it slightly to make this suitable for our speci�c situation:

docker run \
 ��name psql \

�e POSTGRES_PASSWORD='hellopsql' \
�e POSTGRES_USER='rhea' \
�e POSTGRES_DB='warehouse' \
�d postgres:14.11

Once that has run, use docker ps to check that the container is active. Once you verify that, use docker exec �it psql
bash to enter the container.

16 / 33

Testing the DB
Once inside the container, you should see that a prompt that looks like this: root@8141fc89950f

This is just a slightly different looking terminal. You can do most of the things you are used to, like ls and cd .

To enter the psql terminal, we need to be a little speci�c: psql -U rhea warehouse

17 / 33

Structuring access for other users
This is NOT a good way to get access to the database. Later, we are going to have to grant other, non-super users access
to the database. The point is defeated if we have to give them rights to the docker group. What we want is to be able to
access the db straight from the command line. How will we do this? By mapping a port inside the container to one
outside the container (i.e. on our actual server).

docker stop psql
docker run \
 ��name psql \
 �e POSTGRES_PASSWORD='An3JAJk07CCXuXOVY8Ht' \
 �e POSTGRES_USER='rhea' \
 �e POSTGRES_DB='warehouse' \
 �p 3001�5432 \
 �d postgres:14.11

�� Docker overrides iptables! So lets use a secure password!

18 / 33

Now that there is a structured network connection
between the container and the server, we can set up
access via the terminal:

sudo apt install postgresql�client
psql �h localhost �p 3001 -U rhea warehouse

I also recommend you access it from VS Code!

Structuring access for other users

19 / 33

Nginx, SSL and PSQL

Securing in PSQL
You now have a live database! But how do we go about securing our Passwords? Currently the text (aka your password
is being sent in plain text) to the server. We need to implement what is called SSL. Secure Sockets Layer (SSL) is a
security protocol that provides privacy, authentication, and integrity to Internet communications.

To do this we are going to need two things:

• Nginx apt �y install nginx
• Certbot snap install ��classic certbot �� ln �s /snap/bin/certbot /usr/bin/certbot

21 / 33

ANAME and CNAME
The A and CNAME records are the two common ways to map a host name (“name”) to one or more IP addresses. There
are important differences between these two records.

The A record points a name to a speci�c IP. If you want myserver.com to point to the server 123.45.67.90 you’ll con�gure:

myserver.com. A 123.45.67.90

The CNAME (Canonical Name) record points a ANAME instead of to an IP. The CNAME source represents an alias for the
target name and inherits its entire resolution chain.

So think of it as you have an of�ce block with multiple of�ces:

ANAME is your address, while CNAME tells you which of�ce on the property to go to...

22 / 33

Creating ANAME and CNAME records
Log onto Rackzar! They are also providing us the vps services. Click on domains on the main home screen and go to DNS
Manager:

23 / 33

Creating ANAME and CNAME records
Next create a new ANAME record pointing to your server's IP. You can �nd your IP by using the ifconfig command. Once
you have done that, create the CNAME :

24 / 33

Creating ANAME and CNAME records
Time to test!!

Use the command nslookup to go around the room asking other people's ANAME and testing to see if it points to the
correct server:

25 / 33

• There are 2 entrances: a VIP entrance called
vip.busybar.com and dance.busybar.com .

• The bartender (Nginx) checks each guest's
invitation (request) to see which party they are
here for: vip.busybar.com or dance.busybar.com
and guides them to the right room (port).

Besides Nginx acting as a bouncer/barman, it can do
a million other things we do not cover in this
workshop - one of them is loadbalancing!

Nginx as reverse Proxy
Imagine there's a cool new bar busybar.com at address 192.0.0.1 .

26 / 33

Con�guring Nginx
Make sure you are root , then go to /etc/nginx/sites�available/ :

27 / 33

Con�guring Nginx
Next create a �le: touch database.conf and enter it using vim: vim database.conf . We are going to use this �le to
con�gure our reverse proxy:

server {
server_name database.agashinguracumu.africa;

access_log /var/log/nginx/database_access_log.log;
error_log /var/log/nginx/database_error_log.log warn;

location / {

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header Upgrade $http_upgrade;

proxy_http_version 1.1;

proxy_read_timeout 90s;
proxy_pass http:��127.0.0.1�3001/;

 }

}
28 / 33

Con�guring Nginx
After this, we save the con�guration (:wq) and create a symbolic link in sites�enabled :

cd /etc/nginx/sites�enabled
ln �s ��/sites�available/database.conf

This should look something like this:

If so... then you are almost there...

29 / 33

Con�guring iptables for Nginx to work
You are going to need to con�gure your �rewall to allow port 80 and 443 for Nginx to work properly:

iptables -I INPUT 5 �p tcp �s 0.0.0.0/0 ��dport 80 �m comment ��comment "Nginx HTTP" �j ACCEPT
iptables -I INPUT 6 �p tcp �s 0.0.0.0/0 ��dport 443 �m comment ��comment "Nginx HTTPS" �j ACCEPT

30 / 33

Unleash SSL!!

31 / 33

Unleash SSL!!
We can now use certbot to create secure certi�cates: certbot ��nginx ��register�unsafely�without�email

32 / 33

Unleash SSL!!
Last step is to ensure your traf�c is directed through Nginx and not bypassing your �rewall:

docker stop psql

 �p 127.0.0.1�3001�5432 \

Congratulations, you now have setup a SaaS !

docker run \
 ��name psql \
 �e POSTGRES_PASSWORD='An3JAJk07CCXuXOVY8Ht' \
 �e POSTGRES_USER='rhea' \
 �e POSTGRES_DB='warehouse' \

 �d postgres:14.11

33 / 33

