
From Excel to R
(Session 1-1 - Welcome to R)

1) Introduction
2) About this workshop
3) RStudio and Tidyverse
4) Introduction to R
5) Data manipulation
6) Loops

2 / 41

Introduction

About this workshop

What this workshop aims to achieve
• Upskill all participants to understand code used in the data pipeline

The training only aims to serve as a foundation for participants' R coding journey

• Familiarisation with data pipeline

Although not all of the participants will be working on data pipelines on a day to day basis, but
understanding how to conduct basic analysis in R its a very powerful skill to have

7 / 41

Following the workshop, we want the
participants team to:

• Have a basic understanding of the R code
used in a data pipeline

• Understand the �ow of data analysis
pipeline

• Being able to do a basic exploratory
analysis

PLEASE:

• Ask questions, we've been down this road before! ������

Key outcomes

8 / 41

• Please feel free to stop me and ask a question

• If you feel more comfortable asking questions in
writing feel free to email them to hanjo@71point4.com

• Help each other out! Some might be further along their
data journeys than others

Asking for assistance

9 / 41

Why open source
• Open source software such as R has a very large and active communtity

◦ This means that the velocity of new package being made available is growing and an almost exponential rate
• This also means that the access to the latest statistical techniques is available in R with extensive documentation
• Specialized procedures is where the R community's strength lies
• Besides the direct community of R developers, there are online forums which play a signi�cant role in the

development of the software as well as you as a user

10 / 41

Why open source (Cont.)
• These forums give insight into practical solutions to problems and are easily accesible through the use of google:

◦ Go and explore Stackover�ow
◦ Dont be afraid to ask

• Open source also allows for the construction of bespoke software to use in-house
• How to receive the latest information on what people are doing

◦ R-bloggers

11 / 41

https://stackoverflow.com/questions/tagged/r
https://stackoverflow.com/questions/tagged/r
https://www.r-bloggers.com/
https://www.r-bloggers.com/

Why move away from Excel
• Excel is a general point and click camera setup
• Reliability is not its main focus; same can be said for reproducibility
• Platform is unfortunately slow as it contains a lot of overhead

• Excel has a very limited capacity and is memory intensive as it is reactive

• Fundamental �aws:

◦ Solver gives the wrong result about 40% of the time
◦ Random number generation is not always random
◦ Documentation is sparse

12 / 41

Why move away from Excel (Cont.)
• R is free
• The capabilities of the program provides the necessary toolset for data analysis. The most obvious is the plotting

features
◦ Histogram
◦ boxplot
◦ LOESS smoothing of data

13 / 41

RStudio setup

Installing RStudio
• RStudio on your computer - installation instructions

15 / 41

https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/

Introduction to R

Understanding the terminology
• R vs RStudio

R and RStudio are two distinctly different applications that serve different purposes. R is the software
that performs the actual instructions. It’s the workhorse. Without R installed on your computer or
server, you would not be able to run any commands. RStudio is a software that provides a nifty
interface to R. It’s sometimes referred to as an Integrated Development Environment (IDE). Its purpose
is to provide bells and whistles that can improve your experience with the R software.

17 / 41

Understanding the teminology
• RStudio Desktop vs RStudio Server

RStudio Desktop is an R IDE that works with the version of R you have installed on your local
Windows, Mac OS X, or Linux workstation. RStudio Workbench and RStudio Server are Linux server
applications that provide a web-browser-based interface to the version of R running on the server.

18 / 41

What is the tidyverse?

Art by Allison Horst

19 / 41

https://github.com/allisonhorst/stats-illustrations
https://github.com/allisonhorst/stats-illustrations

• dplyr is the grammar of data
manipulation (select , filter , group_by ,
mutate)

• ggplot is the grammar of graphics -
beyond the scope of this workshop (useful
resources: R for Data Science and ggplot2)

What is the tidyverse?
The tidyverse is an opinionated collection of R packages designed for data science. All packages share an
underlying design philosophy, grammar, and data structures.

This collection contains some of the most used libaries that an R data scientist will use on a daily basis. The most
used packages are probably dplyr and ggplot . Today we gonna explore the basics of the dplyr package.

20 / 41

https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
https://ggplot2-book.org/
https://ggplot2-book.org/

What is the tidyverse?
Although we only going to be learning the basics of the tidyverse universe, there is A LOT more to explore in terms of
the power of programming languages like R (and Python).

We recommend R for data analyses due to its �rm pedigree in statistical analysis. Python is getting better at
manipulating data with packages like pandas and alike, while R has become a more general language over the last few
years.

Even though python does offer some nice integration features, R offers a much better ecosystem that supports
reproducible research and data analysis (Rmarkdown , blogdown , targets etc.).

Also, once you grasp the fundamentals of programming, it is very easy to learn another language if it is better suited
towards what you want to achieve.

21 / 41

Useful terminlogy for workshop
• Package

◦ In R, the fundamental unit of shareable code is the package. A package bundles together code, data,
documentation, and tests, and is easy to share with others.

◦ Comprehensive R Archive Network, or CRAN, is the public clearing house for R packages.

• Pipe operator

◦ The pipe operator is a special operational function available under the magrittr and dplyr package (basically
developed under magrittr), which allows us to pass the result of one function/argument to the other one in
sequence. It is generally denoted by symbol %>% in R Programming.

◦ Keyboard shortcut: ctrl + shift + m

◦ Note you can view all keyboard shortcuts with: alt + shift + k

◦ Shortcuts can be modi�ed through the Tools menu at the top of your RStudio IDE

22 / 41

Useful terminlogy for workshop
• Function

◦ In R, a function is an object so the R interpreter is able to pass control to the function, along with arguments
that may be necessary for the function to accomplish the actions

• Assign

◦ To do useful and interesting things in R, we need to assign values to objects. To create an object, we need to
give it a name followed by the assignment operator <-, and the value we want to give it.

◦ Keyboard shortcut: alt + - (dash)

23 / 41

Useful terminlogy for workshop
• Loop

◦ A loop is a control statement that allows multiple executions of a statement or a set of statements. The word
'looping' means cycling or iterating.

• Apply
◦ apply functions are a family of functions in base R which allow you to repetitively perform an action on

multiple chunks of data. An apply function is essentially a loop, but run faster than loops and often require
less code.

24 / 41

• Map
◦ The map functions transform their

input by applying a function to each
element of a list or atomic vector and
returning an object of the same length
as the input. A map function is a more
elegant version of a loop (requires less
code therefore less room for error)

• Joins
◦ We can merge two data frames in R by

using the join of functions.

Useful terminlogy for workshop

25 / 41

Useful terminlogy for workshop
• If statements

◦ It is one of the easiest decision-making statements. It is used to decide whether a certain statement or block
of statements will be executed or not i.e if a certain condition is true then a block of statement is executed
otherwise not.

• Scripts

◦ A script is simply a text �le containing a set of commands and comments. The script can be saved and used
later to re-execute the saved commands. The script can also be edited so you can execute a modi�ed version
of the commands.

◦ Keyboard shortcut: ctrl + shift + n

◦ Comments in R scripts are preceded by the # (pound/hastag) symbol

26 / 41

Useful terminlogy for workshop

27 / 41

The best way is the see for yourself
Get to know some keyboard shortcuts:

• How do I search for a word in my code?
• Where do I �nd that Rstudio IDE cheatsheet again?
• What version of RStudio are you running?
• What is the shortcut for the assignment "<-" operator?
• What is the shortcut for the pipe "%>%" operator?
• Using only the keyboard, how do I move to console?
• How do I set my layout so that my background is black and easier on the eyes?

28 / 41

Installing Solar-Putty

What is Solar-Putty?
A tool to help us manage remote sessions, which is us logging onto remote servers

30 / 41

Steps to installation

31 / 41

Steps to installation

32 / 41

Steps to installation

33 / 41

Steps to installation

34 / 41

Steps to installation

35 / 41

Steps to installation

36 / 41

Steps to installation

37 / 41

Steps to installation

38 / 41

Steps to installation

39 / 41

Steps to installation

40 / 41

Steps to installation

41 / 41

From Excel to R
(Session 1-2 - Documenting Recap)

1) Homework
2) Documenting with Rstudio
3) Introduction to databases

2 / 35

Documenting with
Rstudio �����

Why do we document our code?
When working in a lab, it is important to always take notes on the steps taken in the experiment - why?

• Ensure robustness of results.
• Reliability of reproducibility.
• Ensures that decision can be made using the notes.
• Future you will hate you if you didn't write good documentation and need to redo the experiment or analysis.

But we do not just write down irrelevant comments, we need to make sure our documentation FAIR:

• �ndable
• accessible
• interoperable
• reusable

i.e. they must adequately describe procedure, archive changes, and make the results accessible in an easy
manner.

�� As programmers, we need to ensure that we document both the code that produced the results as well as the
procedures used to conduct the analysis (data cleaning, sampling, source of information etc.).

4 / 35

Reproducible research as a philosophy
A data analysis is reproducible if all the information (data, �les, etc.) required to reproduce the analysis is available to
someone else (or future you). These include (but is not limited to):

• Data repository.
• All code �les for cleaning raw data.
• All code �les and software (speci�c versions, packages) used in the analysis.

Some advantages of making your research reproducible are :

• You can (easily) �gure out what you did six months from now.
◦ If your documentation was well done.

• You can (easily) make adjustments to code or data, even early in the process, and re-run all analysis.
• When you’re ready to publish, you can (easily) do a last double-check of your full analysis, from cleaning the raw

data through generating �gures and tables for the paper.
• You can pass along or share a project with others.

◦ Especially true once you learn git
• You can give useful code examples to people who want to extend your research.

1

Gandrud, C., 2013. Reproducible research with R and Rstudio. CRC Press.1

5 / 35

Installing your �rst piece of software
Experience the ease of software installation in Linux!

Go to rstudio server website.

hanjo@optimus:~$ cd Downloads
hanjo@optimus:~$ wget {installation file path}
hanjo@optimus:~$ dpkg �i {installation file}

Verify your install, go to the ip of your machine in the web-browser

6 / 35

https://www.rstudio.com/products/rstudio/download-server/
https://www.rstudio.com/products/rstudio/download-server/

Rstudio recap
The console give you a place to execute commands written in R.

7 / 35

Rstudio recap
Rstudio also provides a �le explorer which allows users to navigate the folders easily.

8 / 35

Rstudio recap
Once we start assiging outputs to objects, they will appear in the environment window.

9 / 35

Rstudio recap
Lastly, and most importantly, we want to write scripts that we can rerun at a later time.

10 / 35

• Make sure that the Rstudio never
restores .RData at startup.

• This ensures that no hidden objects are
still in your environment when you start
Rstudio.
◦ We will talk a little bit more about

these concepts later in the course.

Setting up Rstudio for analysis
To ensure reproducibility, we want to ensure that our scripts are always able to run without needing
some hidden data.

11 / 35

• Next click on the menu:
File > New Project

Using Projects
Ever had the following expression when people ask you 8 months later "Where is that bit of analysis you did for
me": ����.

We want to avoid feeling like that by keeping all our notes, scripts, data and output in one single place. This is
where Rstudio makes it easy by creating a project.

Start by creating a folder in your home directory called projects and starting a project called markdown :

hanjo@optimus:~$ mkdir �p projects/data_analysis

12 / 35

• Next click on the menu:
File > New Project

• Then select the path projects/
data_analysis as your project folder and
click Create Project

Using Projects
Ever had the following expression when people ask you 8 months later "Where is that bit of analysis you did for
me": ����.

We want to avoid feeling like that by keeping all our notes, scripts, data and output in one single place. This is
where Rstudio makes it easy by creating a project.

Start by creating a folder in your home directory called projects and starting a project called markdown :

hanjo@optimus:~$ mkdir �p projects/data_analysis

13 / 35

Using Projects
Beyond having a dedicated work environment for you project, projects also have other advantages.

The biggest one of them all is relative paths. Ever get a document from someone and they have a link in their
document, but it says something like /Documents/Hanjo/my_work/data/data.csv and now the link no longer works
on your computer.

What Rstudio does is anchor the link from the project directory. So if I ever send Chris my markdown project, and
the data is stored in data/data.csv , it will work on both myself and Chris' computer.

Create the following folder structure in your new project.

.
└── data_analysis
 ├── scripts
 ├── output
 └── data
 ├── raw
 └── processed

14 / 35

05�00

Software for analysis
We are also going to install some R packages to ensure that Rstudio can render our lab-books to both PDF and
HTML.

write each of these lines in the command-line console of Rstudio and press enter . We will be diving deeper in the
R universe later in this course. For now, just follow along with how I do it.

install.packages("rmarkdown")
install.packages("knitr")
install.packages(c("tinytex", "usethis", "rmdformats", "prettydoc"))

15 / 35

10�00

Last, but not least...
Making your Rstudio look cool for you!

Take some time and go into preferences to choose your default color scheme that suites you. OR

Customize your own theme:

https:��tmtheme�editor.herokuapp.com/��/editor/theme/Monokai

16 / 35

Markdown �������������

What is markdown?

R Markdown wizard monsters creating a R Markdown document from a recipe. Art by Allison Horst

18 / 35

https://github.com/allisonhorst/stats-illustrations
https://github.com/allisonhorst/stats-illustrations

What is markdown?

Markdown is a lightweight markup language for creating formatted text using a plain-text editor. John
Gruber and Aaron Swartz created Markdown in 2004 as a markup language that is appealing to human
readers in its source code form. Markdown is widely used in blogging, instant messaging, online forums,
collaborative software, documentation pages, and readme �les.

— Wikipedia

• Abstraction layer above certain compiling formats such as PDF, HTML, Word (XML).
◦ This is pretty cool as you only have to learn the very basic syntax of markdown to be able to convert your

document to any of the formats.
• Rstudio uses a productive notebook interface (called Rmarkdown) to weave together narrative text and code

to produce elegantly formatted output.
◦ Great thing is it supports over 51 languages. Main ones are R , python , shell and SQL .

19 / 35

Understanding markdown in Rstudio
• Start by opening a new Rmarkdown �le (.rmd) in your data_analysis project .

20 / 35

Understanding markdown in Rstudio
• Start by opening a new Rmarkdown �le (.rmd) in your markdown project .

21 / 35

Understanding markdown in Rstudio
• Start by opening a new Rmarkdown �le (.rmd) in your markdown project.

22 / 35

Components of markdown

23 / 35

Understanding markdown in Rstudio
We need to knit our documents in order to produce the output.

• Save your .rmd document in your folder as README.rmd .
• Next, press the knit button at the top OR (be cool) and use CTRL + SHIFT + k !

24 / 35

Components of markdown: YAML
YAML: YAML Ain't Markup Language

The YAML component speci�es the metadata of the �le:

• Type of output to produce
• Formatting preferences of things like tables
• Other metadata such as document title, author, and date.

YAML is dependent on indentation so be careful:

���
title: "My cool document"
author: "Hanjo Odendaal"
date: "11/01/2022"
output: html_document
���

25 / 35

For now, we will only use the code chunks as a documentation tool
for any code that we write. Later on in the course we will actually be
executing the code to produce tables and plots in a document!

Each chunk is opened with a line that starts with three back-ticks,
and curly brackets that contain parameters for the chunk ({ }). The
chunk ends with three more back-ticks.

��� use shortcut (CTRL + ALT + i) to open chunk

Components of markdown: Code Chunks
Code Chunks are the sections of the document where you will write your code that you wish to include into your
document.

26 / 35

Components of markdown: Code Chunks
What do we mean by parameters in the {} brackets? Lets start with the programming language speci�cation.

• They start with r to indicate that the language name within the chunk is R (we can also do python or sql
etc.)

• After the r you can optionally write a chunk "name" - good practice for debugging later on

The curly brackets can include other options too, written as tag = value , such as:

• eval = FALSE to not run the R code.
• echo = FALSE to not print the chunk's R source code in the output document.
• warning = FALSE to not print warnings produced by code.
• message = FALSE to not print any messages produced by code.
• include = TRUE/FALSE whether to include chunk outputs (e.g. plots) in the document.
• out.width and out.height provide in style out.width = "75%" .
• fig.align = "center" adjust how a �gure is aligned across the page.
• fig.show='hold' if your chunk prints multiple �gures and you want them printed next to each other (pair with

out.width = c("33%", "67%") . Can also set animate to concatenate multiple into an animation.

27 / 35

Components of markdown: Markdown Text
Markdown Text is what makes using it as a lab-book (and writing journal articles) so versatile.

������� Would you believe that these slides were all made in using Rmarkdown ?

So lets start with some basics: Headings and Formatting

Header 1

�� Header 2

��� Header 3

So how would this text look ?

So _how_ would ��this�� text `look`?

28 / 35

- Fruits
- Vegtables
 * Carrot
 * Spinach

• Fruits
• Vegtables

◦ Carrot
◦ Spinach

1. Dog
 - German Shepherd ��two spaces)
 - Belgian Shepherd ��two spaces)
2. Cat
 - Siberian ��two spaces)
 - Siamese ��two spaces)

�. Dog
◦ German Shepherd #(two spaces)
◦ Belgian Shepherd #(two spaces)

�. Cat
◦ Siberian #(two spaces)
◦ Siamese #(two spaces)

Components of markdown: Markdown Text
Unordered list items start with * , - , or + , and you can nest one list within another list by indenting the sub-list:

29 / 35

Your turn!
Can you produce the following document?

30 / 35

10�00

• How does the following code affect your
output?

output: pdf_document

• Lets change the output to a Word
document:

output: word_document

Changing formats

���
title: "My first Markdown"
author: "Hanjo Odendaal"
date: "11/01/2022"

���

���
title: "My first Markdown"
author: "Hanjo Odendaal"
date: "11/01/2022"

���

31 / 35

• How does the following code affect your
output?

• All available themes: "cerulean", "cosmo",
"�atly", "journal", "lumen", "paper",
"readable", "sandstone", "simplex",
"spacelab", "united", and "yeti".

���
title: "Your title here"
date: "Todays date"
output:
 html_document:
 theme: journal
 highlight: espresso
 toc: true
 toc_depth: 4
 toc_float: true
 code_folding: show
���

Using advanced YAML
If we are knitting a document to html there are a couple of really cool things we can do in terms of formatting.

32 / 35

• Some of the YAML options might not be
available for when you want to switch
between formats. (example PDF does not
take theme as a parameter)

• To account for those differences, we split
up the yaml parameters between the
different formats.

���
title: "Your title here"
date: "Todays date"
output:
 pdf_document:
 highlight: espresso
 toc: true
 toc_depth: 4
 html_document:
 theme: journal
 toc: false
 highlight: haddock
���

Using advanced YAML
We can also combine our outputs:

33 / 35

Your turn!
Create the following output with a theme and format of your choice.

�� Remember to use chunk option eval = FALSE & echo = TRUE to ensure code doesn't run, but is displayed.

34 / 35

20�00

Quarto is the new thing ;-)
Quarto is a multi-language, next generation version of R Markdown from RStudio, with many new features and
capabilities.

���
title: "ggplot2 demo"
author: "Norah Jones"
date: "5/22/2021"
format:
 html:
 code�fold: true
���

�� Air Quality

@fig�airquality further explores the impact of temperature on ozone level.

'```{r}
#| label: fig�airquality
#| fig�cap: Temperature and ozone level.
#| warning: false

library(ggplot2)

ggplot(airquality, aes(Temp, Ozone)) + 35 / 35

From Excel to R
(Session 1-3 - R Basics)

Getting Started With R

Note this is what we call base R coding. Other
more optimized packages like dplyr , have
different notations. You should, however, be
able to understand base R and at a later stage
the more advanced libraries will be explored.

Basics
I will illustrate how R basically thinks and how you should think in R with an example.

3 / 55

Basics
R uses columns and arrays in order to de�ne data frames. These can be adjusted (as will be seen) to tell R whether
your data is a time-series, panel, or whichever format intended.

Type the following code to create a set in R: (Remember: R is case sensitive!)

R �� c("Very Happy", "Happy", "Not Happy")
Let's now create responses:
W �� c(15,5,3)
M �� c(35,15,14)
C �� c(23,35,32)

• The function c is just concatenate the vector.
• Here we are creating: character and numeric vector.

So we assign a vector to a variable. Do you think my variable names are good?

4 / 55

Basics
Now we have many variables assigned names, but we now want to concatenate it all... i.e. let's merge the columns
together in a single data.frame (as a single unit) - Excel Spreadsheet.

To change the column names, simply type the name �rst:

HappySurvey �� data.frame(Responses = R, Women = W, Men = M, Children = C)

Now to isolate a column, say Men, and count the responses, use the $ sign. Note the following syntax to access a
column:

sum(HappySurvey$Men)

x �� HappySurvey$Men
x �� HappySurvey[,3] # calling all rows of column 3

5 / 55

Basics
Other useful base R commands include:

mean(x)
min(x)
median(x)
summary(x)

Congratulations, that's your �rst successful command in R...

If you are using a package or base R functions, and you do not know what the inputs are: do the following:

• Type ? before the command to get info in the Help page in Rstudio (or ??xxx for internet help)

• Type the command, e.g.: chisq.test ; add brackets chisq.test() ; within the brackets type CTRL + SPACE.

◦ You now see the possible inputs to the function (some are required, others may have defaults).

6 / 55

Exercises
• Create this string

example_string �� "This string is 33 characters long"

• What is the length of the string?

length(example_string)
nchar(example_string)

• We can use length() to see the number of elements in a vector

length(W)

7 / 55

Data Structures

Vectors
As we have been exploring, R contains several object structures: we can store and operate on a bit of data by placing it
in a particular structure called a vector . Vectors are collections of one or more elements of data of the same type.

my_numbers �� c(1, 3, 4, 5�10)
sqrt(my_numbers)

�� [1] 1.000000 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427 3.000000
�� [9] 3.162278

is.vector(my_numbers)

�� [1] TRUE

length(my_numbers)

�� [1] 9

9 / 55

Vectors
Just as the same as a numeric vector, we can create a character vectors and apply functions to it:

my_names �� c("jill", "jack", "chris", "hanjo", "tivan", 400)
toupper(my_names)

�� [1] "JILL" "JACK" "CHRIS" "HANJO" "TIVAN" "400"

nchar(my_names)

�� [1] 4 4 5 5 5 3

Can you notice what happens when we mix characters and numerics in a vector?

10 / 55

Vectors
Accessing the elements in a vector we use [. Unlike Python , R uses 1 base, not zero.

my_numbers �� c(1, 3, 4, 5�10)
my_numbers[0]

�� numeric(0)

my_numbers[1]

�� [1] 1

my_names �� c("jill", "jack", "chris", "hanjo", "tivan", 400)
my_names[c(1, 5)]

�� [1] "jill" "tivan"

11 / 55

Odendaal �� list(name = "Hanjo",
 title = "R master Joda",
 subject = "R training",
 university = "Stellenbosch"
 salary = "$10 million Zim")

Odendaal

�� $name
�� [1] "Hanjo"
��
�� $title
�� [1] "R master Joda"
��
�� $subject
�� [1] "R training"
��
�� $university
�� [1] "Stellenbosch"
��
�� $salary
�� [1] "$10 million Zim"

Lists
Can be considered to be an bit more of an advanced storing method as it has to do with how the list object stores data.
The best thing about list though is that you can store different kinds of data in a list object. They do not have to
conform to a structure as with arrays and data.frames . Thus you will encounter them a lot of the times when you are
working with R functions from packages

12 / 55

Odendaal[['name']]

�� [1] "Hanjo"

Odendaal[[1]]

�� [1] "Hanjo"

Odendaal[c(2,3)]

�� $title
�� [1] "R master Joda"
��
�� $subject
�� [1] "R training"

One of the best explanations of what a list is and how to
access them was tweeted once by Hadley Wickham:

Lists
The Important thing about accessing lists, is that the syntax uses [[]] types of brackets:

13 / 55

http://hadley.nz/
http://hadley.nz/

Data Frames
So R 's vectors are one-dimensional with n length, BUT data frames are the bread and butter of R and allows for
storing data in both rows and columns. This makes the data frame the R equivalent of an Excel spreadsheet.

As opposed to a vector, a data frame is a two-dimensional (and even n -dimensional) data structure where records in
each column are of the same class and all columns are of the same length.

data.frame(
 class_marks = c(1�5),
 people = letters[1�5],
 attended = c(TRUE, FALSE, TRUE, TRUE, TRUE)
)

�� class_marks people attended
�� 1 1 a TRUE
�� 2 2 b FALSE
�� 3 3 c TRUE
�� 4 4 d TRUE
�� 5 5 e TRUE

Data frames are cool... but tibbles are next level

14 / 55

Functions
The more and more advanced you get, you will not only be using functions, but start to write your own.

Lets think of a basic function... perhaps we want to multiply a number by itself for some reason and round the number
to two decimals. How would you do that?

normal_dist �� rnorm(100)

multiply �� function(x){
 res �� round(x�x, 2)

return(res)
}

head(normal_dist)

�� [1] 0.2918109 1.4738248 1.9730454 0.4633440 0.0411252 0.9137999

head(multiply(normal_dist))

�� [1] 0.09 2.17 3.89 0.21 0.00 0.84

15 / 55

stock_data �� data.frame(
 crops = c("maize", "soya", "rice", "potatoes"
 quantity_ordered = c(100, 200, 38, 1050),
 price_per_kg = c(1000, 1855.99, 99.50, 500
 in_stock = c(TRUE, TRUE, FALSE, TRUE)
)

staff_data �� data.frame(
 names = c("Jean de Dieu", "Martha"),
 monday = c(TRUE, TRUE),
 tuesday = c(TRUE, TRUE),
 wednesday = c(FALSE, TRUE),
 thursday = c(FALSE, TRUE),
 friday = c(TRUE, TRUE)
)

shop_1_list �� list(
 active = TRUE,
 stock = stock_data,
 staff = staff_data
)

shop_2_list �� list(
 active = FALSE
)

shops_list �� list(
 shop_1 = shop_1_list,
 shop_2 = shop_2_list
)

Exercises
• Create the following data frames & lists

16 / 55

Tidy Data
Tidy data is a standard way of mapping the meaning of a dataset to its structure. A dataset is messy or tidy depending
on how rows, columns and tables are matched up with observations, variables and types. In tidy data: Every column is a
variable. Every row is an observation.

17 / 55

Unleash Tidyverse �������������

Data Analysis Work�ow

19 / 55

Tidyverse Packages

20 / 55

Packages
Lets load the packages!

library(tidyverse)

── Attaching packages ───────────── tidyverse 1.3.0 ──
✔ ggplot2 3.3.5 ✔ purrr 0.3.4
✔ tibble 3.1.6 ✔ dplyr 1.0.8
✔ tidyr 1.1.3 ✔ stringr 1.4.0
✔ readr 1.3.1 ✔ forcats 0.5.0
── Conflicts ──────────────── tidyverse_conflicts() ──
✖ dplyr��filter() masks stats��filter()
✖ dplyr��lag() masks stats��lag()

Now, lets create the same data frame of earlier, but using a tibble!

21 / 55

Tibble
Tibbles have amazing properties such as pretty print, showing you the class of the column and not creating factors
for characters.

df �� tibble(
 class_marks = c(1�5),
 people = letters[1�5],
 attended = c(TRUE, FALSE, TRUE, TRUE, TRUE)
)

df

�� # A tibble: 5 × 3
�� class_marks people attended
�� <int> <chr> <lgl>
�� 1 1 a TRUE
�� 2 2 b FALSE
�� 3 3 c TRUE
�� 4 4 d TRUE
�� 5 5 e TRUE

22 / 55

Exploring data frames
To start, lets load a dataset using the read_csv function. One of the cool things about reading data is that we can
either read local data OR we can load data straight from the internet!

worldcup �� read_csv("data/worldcup.csv")

�� Rows: 21 Columns: 10
�� ── Column specification ──
�� Delimiter: ","
�� chr (5): host, winner, second, third, fourth
�� dbl (5): year, goals_scored, teams, games, attendance
��
�� ℹ Use `spec()` to retrieve the full column specification for this data.
�� ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

23 / 55

Exploring data frames
The glimpse() function is a way to print several records of the data frame, along with its column names and class:

glimpse(worldcup)

�� Rows: 21
�� Columns: 10
�� $ year <dbl> 1930, 1934, 1938, 1950, 1954, 1958, 1962, 1966, 1970, 197…
�� $ host <chr> "Uruguay", "Italy", "France", "Brazil", "Switzerland", "S…
�� $ winner <chr> "Uruguay", "Italy", "Italy", "Uruguay", "West Germany", "…
�� $ second <chr> "Argentina", "Czechoslovakia", "Hungary", "Brazil", "Hung…
�� $ third <chr> "USA", "Germany", "Brazil", "Sweden", "Austria", "France"…
�� $ fourth <chr> "Yugoslavia", "Austria", "Sweden", "Spain", "Uruguay", "W…
�� $ goals_scored <dbl> 70, 70, 84, 88, 140, 126, 89, 89, 95, 97, 102, 146, 132, …
�� $ teams <dbl> 13, 16, 15, 13, 16, 16, 16, 16, 16, 16, 16, 24, 24, 24, 2…
�� $ games <dbl> 18, 17, 18, 22, 26, 35, 32, 32, 32, 38, 38, 52, 52, 52, 5…
�� $ attendance <dbl> 434000, 395000, 483000, 1337000, 943000, 868000, 776000, …

24 / 55

Exploring data frames
There is also a really nice function from the skimr package. We don't need to load a package to use one if its functions.

skimr��skim(worldcup)

25 / 55

Writing data frames
Given that we used read_csv to read in the data, I think it speaks for itself that we will use write_csv to write the data
to a csv. We can also use write_delim if you want to change the delimiter.

write_csv(worldcup, "output/worldcup.csv")
write_delim(worldcup, "output/worldcup.csv", delim = "|")

26 / 55

Exercises
• Write out a csv for me of the �rst 3 columns into the folder: output/world_cup_winners.csv

27 / 55

Data manipulation

Manipulating objects with dplyr

Art by Allison Horst

29 / 55

https://github.com/allisonhorst/stats-illustrations
https://github.com/allisonhorst/stats-illustrations

• select : Selects speci�c columns by
name.

• filter : Filter data based on certain
criteria.

• mutate : Create a new column.
• group_by : Column to aggregate on.
• summarise : How do you want to

summarise the data?

In R we gonna chain these commands using whats
called the pipe operator: %>% . The shortcut to print this
symbol is: Ctrl + Shift + m .

We read this %>% symbol as: and then

• So for instance worldcup %>% select(winner) reads
in english as: Take object worldcup and then select
column winner .

• Another would be worldcup %>% filter(games < 22)
: Take object worldcup and then �lter out rows
where games is more than 22.

Manipulating objects with dplyr
We can use the dplyr library to manipulate the data using very basic functions:

30 / 55

https://dplyr.tidyverse.org/reference/index.html
https://dplyr.tidyverse.org/reference/index.html

select()
Extract columns by name: select(.data, ���)

worldcup %>% select(winner, goals_scored, attendance)

�� # A tibble: 21 × 3
�� winner goals_scored attendance
�� <chr> <dbl> <dbl>
�� 1 Uruguay 70 434000
�� 2 Italy 70 395000
�� 3 Italy 84 483000
�� 4 Uruguay 88 1337000
�� 5 West Germany 140 943000
�� 6 Brazil 126 868000
�� 7 Brazil 89 776000
�� 8 England 89 1614677
�� 9 Brazil 95 1673975
�� 10 West Germany 97 1774022
�� # ℹ 11 more rows

31 / 55

select()
These helpers select variables by matching patterns in their names:

• : for selecting a range of consecutive variables.
• ! for taking the complement of a set of variables.

• c() for combining selections.

• starts_with() : Starts with a pre�x.

• ends_with() : Ends with a suf�x.
• contains() : Contains a literal string.
• matches() : Matches a regular expression.
• num_range() : Matches a numerical range like x01, x02, x03.

• where() : Applies a function to all variables and selects those for which the function returns TRUE .

• & and | for selecting the intersection or the union of two sets of variables.

32 / 55

select()
• : for selecting a range of consecutive variables.

worldcup %>% select(winner:goals_scored)

�� # A tibble: 21 × 5
�� winner second third fourth goals_scored
�� <chr> <chr> <chr> <chr> <dbl>
�� 1 Uruguay Argentina USA Yugoslavia 70
�� 2 Italy Czechoslovakia Germany Austria 70
�� 3 Italy Hungary Brazil Sweden 84
�� 4 Uruguay Brazil Sweden Spain 88
�� 5 West Germany Hungary Austria Uruguay 140
�� 6 Brazil Sweden France West Germany 126
�� 7 Brazil Czechoslovakia Chile Yugoslavia 89
�� 8 England West Germany Portugal Soviet Union 89
�� 9 Brazil Italy West Germany Uruguay 95
�� 10 West Germany Netherlands Poland Brazil 97
�� # ℹ 11 more rows

33 / 55

select()
• ! for taking the complement of a set of variables.

worldcup %>% select(!(winner:goals_scored))

�� # A tibble: 21 × 5
�� year host teams games attendance
�� <dbl> <chr> <dbl> <dbl> <dbl>
�� 1 1930 Uruguay 13 18 434000
�� 2 1934 Italy 16 17 395000
�� 3 1938 France 15 18 483000
�� 4 1950 Brazil 13 22 1337000
�� 5 1954 Switzerland 16 26 943000
�� 6 1958 Sweden 16 35 868000
�� 7 1962 Chile 16 32 776000
�� 8 1966 England 16 32 1614677
�� 9 1970 Mexico 16 32 1673975
�� 10 1974 Germany 16 38 1774022
�� # ℹ 11 more rows

34 / 55

select()
• starts_with() : Starts with a pre�x.

worldcup %>% select(starts_with("goals_"))

�� # A tibble: 21 × 1
�� goals_scored
�� <dbl>
�� 1 70
�� 2 70
�� 3 84
�� 4 88
�� 5 140
�� 6 126
�� 7 89
�� 8 89
�� 9 95
�� 10 97
�� # ℹ 11 more rows

35 / 55

select()
• ends_with() : Ends with a suf�x.

worldcup %>% select(ends_with("_scored"))

�� # A tibble: 21 × 1
�� goals_scored
�� <dbl>
�� 1 70
�� 2 70
�� 3 84
�� 4 88
�� 5 140
�� 6 126
�� 7 89
�� 8 89
�� 9 95
�� 10 97
�� # ℹ 11 more rows

36 / 55

select()
• contains() : Contains a literal string.

worldcup %>% select(contains("s"))

�� # A tibble: 21 × 5
�� host second goals_scored teams games
�� <chr> <chr> <dbl> <dbl> <dbl>
�� 1 Uruguay Argentina 70 13 18
�� 2 Italy Czechoslovakia 70 16 17
�� 3 France Hungary 84 15 18
�� 4 Brazil Brazil 88 13 22
�� 5 Switzerland Hungary 140 16 26
�� 6 Sweden Sweden 126 16 35
�� 7 Chile Czechoslovakia 89 16 32
�� 8 England West Germany 89 16 32
�� 9 Mexico Italy 95 16 32
�� 10 Germany Netherlands 97 16 38
�� # ℹ 11 more rows

37 / 55

select()
• matches() : Matches a regular expression.

worldcup %>% select(matches(".�s$"))

�� # A tibble: 21 × 2
�� teams games
�� <dbl> <dbl>
�� 1 13 18
�� 2 16 17
�� 3 15 18
�� 4 13 22
�� 5 16 26
�� 6 16 35
�� 7 16 32
�� 8 16 32
�� 9 16 32
�� 10 16 38
�� # ℹ 11 more rows

38 / 55

select()
• where() : Applies a function to all variables and selects those for which the function returns TRUE .

worldcup %>% select(where(is.numeric))

�� # A tibble: 21 × 5
�� year goals_scored teams games attendance
�� <dbl> <dbl> <dbl> <dbl> <dbl>
�� 1 1930 70 13 18 434000
�� 2 1934 70 16 17 395000
�� 3 1938 84 15 18 483000
�� 4 1950 88 13 22 1337000
�� 5 1954 140 16 26 943000
�� 6 1958 126 16 35 868000
�� 7 1962 89 16 32 776000
�� 8 1966 89 16 32 1614677
�� 9 1970 95 16 32 1673975
�� 10 1974 97 16 38 1774022
�� # ℹ 11 more rows

39 / 55

select()
• & and | for selecting the intersection or the union of two sets of variables.

worldcup %>% select(where(is.numeric) & ends_with("s"))

�� # A tibble: 21 × 2
�� teams games
�� <dbl> <dbl>
�� 1 13 18
�� 2 16 17
�� 3 15 18
�� 4 13 22
�� 5 16 26
�� 6 16 35
�� 7 16 32
�� 8 16 32
�� 9 16 32
�� 10 16 38
�� # ℹ 11 more rows

40 / 55

�lter()

Art by Allison Horst

41 / 55

https://github.com/allisonhorst/stats-illustrations
https://github.com/allisonhorst/stats-illustrations

�lter()
What if we want to only analyze certain rows? In dplyr we use the filter() function:

worldcup %>% filter(goals_scored > 100)

�� # A tibble: 13 × 10
�� year host winner second third fourth goals_scored teams games attendance
�� <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
�� 1 1954 Switzer… West … Hunga… Aust… Urugu… 140 16 26 943000
�� 2 1958 Sweden Brazil Sweden Fran… West … 126 16 35 868000
�� 3 1978 Argenti… Argen… Nethe… Braz… Italy 102 16 38 1610215
�� 4 1982 Spain Italy West … Pola… France 146 24 52 1856277
�� 5 1986 Mexico Argen… West … Fran… Belgi… 132 24 52 2407431
�� 6 1990 Italy West … Argen… Italy Engla… 115 24 52 2527348
�� 7 1994 USA Brazil Italy Swed… Bulga… 141 24 52 3568567
�� 8 1998 France France Brazil Croa… Nethe… 171 32 64 2859234
�� 9 2002 Japan, … Brazil Germa… Turk… South… 161 32 64 2724604
�� 10 2006 Germany Italy France Germ… Portu… 147 32 64 3367000
�� 11 2010 South A… Spain Nethe… Germ… Urugu… 145 32 64 2167984
�� 12 2014 Brazil Germa… Argen… Neth… Brazil 171 32 64 3441450
�� 13 2018 Russia France Croat… Belg… Engla… 169 32 64 3031768

42 / 55

�lter()
We can use multiple conditions to �lter (this represents an AND):

worldcup %>% filter(goals_scored > 100, year > 1975)

�� # A tibble: 11 × 10
�� year host winner second third fourth goals_scored teams games attendance
�� <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
�� 1 1978 Argenti… Argen… Nethe… Braz… Italy 102 16 38 1610215
�� 2 1982 Spain Italy West … Pola… France 146 24 52 1856277
�� 3 1986 Mexico Argen… West … Fran… Belgi… 132 24 52 2407431
�� 4 1990 Italy West … Argen… Italy Engla… 115 24 52 2527348
�� 5 1994 USA Brazil Italy Swed… Bulga… 141 24 52 3568567
�� 6 1998 France France Brazil Croa… Nethe… 171 32 64 2859234
�� 7 2002 Japan, … Brazil Germa… Turk… South… 161 32 64 2724604
�� 8 2006 Germany Italy France Germ… Portu… 147 32 64 3367000
�� 9 2010 South A… Spain Nethe… Germ… Urugu… 145 32 64 2167984
�� 10 2014 Brazil Germa… Argen… Neth… Brazil 171 32 64 3441450
�� 11 2018 Russia France Croat… Belg… Engla… 169 32 64 3031768

43 / 55

�lter()
The special function %in% also gets used often to specify multiple conditions:

worldcup %>% filter(winner %in% c("Italy", "Spain"))

�� # A tibble: 5 × 10
�� year host winner second third fourth goals_scored teams games attendance
�� <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
�� 1 1934 Italy Italy Czech… Germ… Austr… 70 16 17 395000
�� 2 1938 France Italy Hunga… Braz… Sweden 84 15 18 483000
�� 3 1982 Spain Italy West … Pola… France 146 24 52 1856277
�� 4 2006 Germany Italy France Germ… Portu… 147 32 64 3367000
�� 5 2010 South Af… Spain Nethe… Germ… Urugu… 145 32 64 2167984

44 / 55

�lter()
Its also possible to create OR �lters using the pipe delimiter ("|"):

worldcup %>% filter(winner %in% c("Italy", "Spain") | goals_scored < 100)

�� # A tibble: 11 × 10
�� year host winner second third fourth goals_scored teams games attendance
�� <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
�� 1 1930 Uruguay Urugu… Argen… USA Yugos… 70 13 18 434000
�� 2 1934 Italy Italy Czech… Germ… Austr… 70 16 17 395000
�� 3 1938 France Italy Hunga… Braz… Sweden 84 15 18 483000
�� 4 1950 Brazil Urugu… Brazil Swed… Spain 88 13 22 1337000
�� 5 1962 Chile Brazil Czech… Chile Yugos… 89 16 32 776000
�� 6 1966 England Engla… West … Port… Sovie… 89 16 32 1614677
�� 7 1970 Mexico Brazil Italy West… Urugu… 95 16 32 1673975
�� 8 1974 Germany West … Nethe… Pola… Brazil 97 16 38 1774022
�� 9 1982 Spain Italy West … Pola… France 146 24 52 1856277
�� 10 2006 Germany Italy France Germ… Portu… 147 32 64 3367000
�� 11 2010 South A… Spain Nethe… Germ… Urugu… 145 32 64 2167984

45 / 55

�lter()
Lastly, we can also use a function on a column (as a vector) and then �lter on the outcome:

worldcup %>% filter(goals_scored > mean(goals_scored, na.rm = TRUE))

�� # A tibble: 11 × 10
�� year host winner second third fourth goals_scored teams games attendance
�� <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
�� 1 1954 Switzer… West … Hunga… Aust… Urugu… 140 16 26 943000
�� 2 1958 Sweden Brazil Sweden Fran… West … 126 16 35 868000
�� 3 1982 Spain Italy West … Pola… France 146 24 52 1856277
�� 4 1986 Mexico Argen… West … Fran… Belgi… 132 24 52 2407431
�� 5 1994 USA Brazil Italy Swed… Bulga… 141 24 52 3568567
�� 6 1998 France France Brazil Croa… Nethe… 171 32 64 2859234
�� 7 2002 Japan, … Brazil Germa… Turk… South… 161 32 64 2724604
�� 8 2006 Germany Italy France Germ… Portu… 147 32 64 3367000
�� 9 2010 South A… Spain Nethe… Germ… Urugu… 145 32 64 2167984
�� 10 2014 Brazil Germa… Argen… Neth… Brazil 171 32 64 3441450
�� 11 2018 Russia France Croat… Belg… Engla… 169 32 64 3031768

46 / 55

Exercises �����

Exercises
• Select all columns from year to winner.
• Select all the columns that is of the class character.
• Where the host was in the top three?
• Filter the World Cup had the most attendance and select the goals scored, the year and the winner.

◦ Write out results to csv.

48 / 55

20�00

mutate()

Art by Allison Horst

49 / 55

https://github.com/allisonhorst/stats-illustrations
https://github.com/allisonhorst/stats-illustrations

mutate()
Often you will need to add a new column that you derive. To accomplish this using dplyr we use mutate . Lets
calculate average goals per game:

worldcup %>% mutate(avg_goals = goals_scored/games)

�� # A tibble: 21 × 11
�� year host winner second third fourth goals_scored teams games attendance
�� <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
�� 1 1930 Uruguay Urugu… Argen… USA Yugos… 70 13 18 434000
�� 2 1934 Italy Italy Czech… Germ… Austr… 70 16 17 395000
�� 3 1938 France Italy Hunga… Braz… Sweden 84 15 18 483000
�� 4 1950 Brazil Urugu… Brazil Swed… Spain 88 13 22 1337000
�� 5 1954 Switzer… West … Hunga… Aust… Urugu… 140 16 26 943000
�� 6 1958 Sweden Brazil Sweden Fran… West … 126 16 35 868000
�� 7 1962 Chile Brazil Czech… Chile Yugos… 89 16 32 776000
�� 8 1966 England Engla… West … Port… Sovie… 89 16 32 1614677
�� 9 1970 Mexico Brazil Italy West… Urugu… 95 16 32 1673975
�� 10 1974 Germany West … Nethe… Pola… Brazil 97 16 38 1774022
�� # ℹ 11 more rows
�� # ℹ 1 more variable: avg_goals <dbl>

50 / 55

mutate()
I do not enjoy having to code with capitals in character columns, so lets use tolower and across to �x this
problem over all the character columns.

worldcup %>% mutate(across(where(is.character), tolower))

�� # A tibble: 21 × 10
�� year host winner second third fourth goals_scored teams games attendance
�� <dbl> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
�� 1 1930 uruguay urugu… argen… usa yugos… 70 13 18 434000
�� 2 1934 italy italy czech… germ… austr… 70 16 17 395000
�� 3 1938 france italy hunga… braz… sweden 84 15 18 483000
�� 4 1950 brazil urugu… brazil swed… spain 88 13 22 1337000
�� 5 1954 switzer… west … hunga… aust… urugu… 140 16 26 943000
�� 6 1958 sweden brazil sweden fran… west … 126 16 35 868000
�� 7 1962 chile brazil czech… chile yugos… 89 16 32 776000
�� 8 1966 england engla… west … port… sovie… 89 16 32 1614677
�� 9 1970 mexico brazil italy west… urugu… 95 16 32 1673975
�� 10 1974 germany west … nethe… pola… brazil 97 16 38 1774022
�� # ℹ 11 more rows

51 / 55

mutate()
Another nice feature we can use is the case_when function inside the mutate:

worldcup %>%
 mutate(year_groups = case_when(
 year < 1950 ~ "before 1950",
 between(year, 1950, 1970) ~ "1970s",
 year > 2000 ~ "2000s",

TRUE ~ "other"
), .after = year) %>%
 head()

�� # A tibble: 6 × 11
�� year year_groups host winner second third fourth goals_scored teams games
�� <dbl> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
�� 1 1930 before 1950 Uruguay Urugu… Argen… USA Yugos… 70 13 18
�� 2 1934 before 1950 Italy Italy Czech… Germ… Austr… 70 16 17
�� 3 1938 before 1950 France Italy Hunga… Braz… Sweden 84 15 18
�� 4 1950 1970s Brazil Urugu… Brazil Swed… Spain 88 13 22
�� 5 1954 1970s Switzer… West … Hunga… Aust… Urugu… 140 16 26
�� 6 1958 1970s Sweden Brazil Sweden Fran… West … 126 16 35
�� # ℹ 1 more variable: attendance <dbl>

52 / 55

group_by() & summarise()
We might want to run an aggregation over a certain variables to calculate means, medians, etc. This can be done in
R using dplyr group_by and summarise .

worldcup %>%
 group_by(winner) %>%
 summarise(ave_attendance = mean(attendance, na.rm = T))

�� # A tibble: 9 × 2
�� winner ave_attendance
�� <chr> <dbl>
�� 1 Argentina 2008823
�� 2 Brazil 1922229.
�� 3 England 1614677
�� 4 France 2945501
�� 5 Germany 3441450
�� 6 Italy 1525319.
�� 7 Spain 2167984
�� 8 Uruguay 885500
�� 9 West Germany 1748123.

53 / 55

group_by() & summarise()
We can also extend the calculations to multiple outputs:

worldcup %>%
 group_by(winner) %>%
 summarise(
 ave_attendance = mean(attendance, na.rm = T),
 min_attendance = min(attendance, na.rm = T),
 max_attendance = max(attendance, na.rm = T),
 number_wins = n()
) %>%
 arrange(desc(number_wins)) %>%
 filter(number_wins > 3)

�� # A tibble: 2 × 5
�� winner ave_attendance min_attendance max_attendance number_wins
�� <chr> <dbl> <dbl> <dbl> <int>
�� 1 Brazil 1922229. 776000 3568567 5
�� 2 Italy 1525319. 395000 3367000 4

54 / 55

Exercise
Exercises for mutate and summarise

• Calculate the average number of games per team for each world cup.
• Create a new column in the data that shows how many times the speci�c host country has hosted the world cup.
• Summarise the data to show the countries that have hosted the world cup, what the �rst year and last year was

that they hosted it and what the total attendance for all the years they hosted it was. (Bonus, arrange the rows
from the country with the highest all time attendance to the lowest)

55 / 55

30�00

From Excel to R
(Session 2-1 - Tidyr and Database

connections)

Manipulating objects with tidyr

Art by Allison Horst

2 / 17

https://github.com/allisonhorst/stats-illustrations
https://github.com/allisonhorst/stats-illustrations

breed_traits %>% head

�� # A tibble: 6 × 17
�� breed affectionate_with_fa…¹ good_with_young_chil…² good_with_other_dogs
�� <chr> <dbl> <dbl> <dbl>
�� 1 Retrievers… 5 5 5
�� 2 French Bul… 5 5 4
�� 3 German She… 5 5 3
�� 4 Retrievers… 5 5 5
�� 5 Bulldogs 4 3 3
�� 6 Poodles 5 5 3
�� # ℹ abbreviated names: ¹affectionate_with_family, ²good_with_young_children
�� # ℹ 13 more variables: shedding_level <dbl>, coat_grooming_frequency <dbl>,
�� # drooling_level <dbl>, coat_type <chr>, coat_length <chr>,
�� # openness_to_strangers <dbl>, playfulness_level <dbl>,
�� # watchdog_protective_nature <dbl>, adaptability_level <dbl>,
�� # trainability_level <dbl>, energy_level <dbl>, barking_level <dbl>,
�� # mental_stimulation_needs <dbl>

Data Manipulation Tidyr
breed_traits �� readr��read_csv('data/breed_traits.csv') %>%
 janitor��clean_names() %>%
 mutate(breed = gsub("\u00A0", " ", breed, fixed =TRUE))

https://twitter.com/WeAreRLadies/status/1494728669864112130

3 / 17

https://twitter.com/WeAreRLadies/status/1494728669864112130
https://twitter.com/WeAreRLadies/status/1494728669864112130

breed_traits %>%
 select(breed, where(is.numeric)) %>%
 pivot_longer(names_to = "attribute",
 values_to = "values",
 �breed)

�� # A tibble: 2,730 × 3
�� breed attribute values
�� <chr> <chr> <dbl>
�� 1 Retrievers (Labrador) affectionate_with_family 5
�� 2 Retrievers (Labrador) good_with_young_children 5
�� 3 Retrievers (Labrador) good_with_other_dogs 5
�� 4 Retrievers (Labrador) shedding_level 4
�� 5 Retrievers (Labrador) coat_grooming_frequency 2
�� 6 Retrievers (Labrador) drooling_level 2
�� 7 Retrievers (Labrador) openness_to_strangers 5
�� 8 Retrievers (Labrador) playfulness_level 5
�� 9 Retrievers (Labrador) watchdog_protective_nature 3
�� 10 Retrievers (Labrador) adaptability_level 5
�� # ℹ 2,720 more rows

pivot_longer()
pivot_longer() is probably one of the most used functions when doing any analysis as most data come in 'human'
readable format, while we want 'computer' readable data for data analysis. The arguments for the function is:
pivot_longer(names_to = ���, values_to = ���)

• How does the data need to look if we want to get the breed with the best average score?

4 / 17

breed_traits %>%
 select(breed, where(is.numeric)) %>%
 pivot_longer(names_to = "attribute",
 values_to = "values",
 �breed) %>%
 group_by(breed) %>%
 summarise(avg_values = mean(values),
 .groups = "drop") %>%
 arrange(desc(avg_values))

�� # A tibble: 195 × 2
�� breed avg_values
�� <chr> <dbl>
�� 1 Keeshonden 4.29
�� 2 Portuguese Water Dogs 4.14
�� 3 Retrievers (Labrador) 4.14
�� 4 Papillons 4.07
�� 5 Retrievers (Flat-Coated) 4.07
�� 6 Shetland Sheepdogs 4.07
�� 7 German Shepherd Dogs 4
�� 8 Poodles 4
�� 9 Setters (Irish) 4
�� 10 Vizslas 4
�� # ℹ 185 more rows

pivot_longer()
pivot_longer() is probably one of the most used functions when doing any analysis as most data come in 'human'
readable format, while we want 'computer' readable data for data analysis. The arguments for the function is:
pivot_longer(names_to = ���, values_to = ���)

• How does the data need to look if we want to get the breed with the best average score?

5 / 17

pivot_longer()

I am in need of a dog that has short hair, highly trainable and good with young children. Can you identify the
breed that will best suite my needs? Use filter , pivot_longer , group_by , summarise and arrange to solve the
problem...

6 / 17

30�00

breed_traits %>%
 select(shedding_level, coat_type, coat_length) %>%
 group_by(coat_length, coat_type) %>%
 summarise(avg_shedding = mean(shedding_level),
 .groups = "drop")

�� # A tibble: 19 × 3
�� coat_length coat_type avg_shedding
�� <chr> <chr> <dbl>
�� 1 Long Corded 1
�� 2 Long Curly 1.5
�� 3 Long Double 2.44
�� 4 Long Rough 2
�� 5 Long Silky 1.5
�� 6 Long Wavy 2
�� 7 Medium Corded 1
�� 8 Medium Curly 1.4
�� 9 Medium Double 3.03
�� 10 Medium Rough 2.5
�� 11 Medium Silky 3
�� 12 Medium Smooth 3
�� 13 Medium Wavy 1.8
�� 14 Medium Wiry 2.53
�� 15 Plott Hounds Plott Hounds 0
�� 16 Short Double 3.18
�� 17 Short Hairless 1
�� 18 Short Smooth 2.80
�� 19 Short Wiry 2.36

pivot_wider()
pivot_wider() works just as pivot_longer did, but now it spreads the columns out in a wide format. I �nd I mostly use
this when I am doing modeling exercises or outputting the values for team members in Excel to work with.
pivot_wider(names_from = ���, values_from = ���)

7 / 17

 pivot_wider(names_from = "coat_length",
 values_from = "avg_shedding")

�� # A tibble: 10 × 5
�� coat_type Long Medium `Plott Hounds` Short
�� <chr> <dbl> <dbl> <dbl> <dbl>
�� 1 Corded 1 1 NA NA
�� 2 Curly 1.5 1.4 NA NA
�� 3 Double 2.44 3.03 NA 3.18
�� 4 Rough 2 2.5 NA NA
�� 5 Silky 1.5 3 NA NA
�� 6 Wavy 2 1.8 NA NA
�� 7 Smooth NA 3 NA 2.80
�� 8 Wiry NA 2.53 NA 2.36
�� 9 Plott Hounds NA NA 0 NA
�� 10 Hairless NA NA NA 1

pivot_wider()
pivot_wider() works just as pivot_longer did, but now it spreads the columns out in a wide format. I �nd I mostly use
this when I am doing modeling exercises or outputting the values for team members in Excel to work with.
pivot_wider(names_from = ���, values_from = ���)

breed_traits %>%
 select(shedding_level, coat_type, coat_length) %>%
 group_by(coat_length, coat_type) %>%
 summarise(avg_shedding = mean(shedding_level),
 .groups = "drop") %>%

8 / 17

Excercise
Use the starwars data set which has been loaded along with the tidyverse. Use tidyverse functions to (1) select all the
columns from the �rst up to species; (2) use pivot_longer() and create a column that contains the attributes (hair,
skin and eye) and a column that contains the color of the corresponding attribute and save it as starwars_longer ; (3)
use pivot_wider() to get the data frame back into its original wider format and save it as starwars_wider .

9 / 17

Answer
pivot longer
starwars_long �� starwars %>%
 select(name:species) %>%
 pivot_longer(
 contains("_color"),
 names_to = "attribute",
 values_to = "color"
)

starwars_long

After looking at the data in this format, it is perhaps not as sensible to have colors related to different attributes in a
singloe column. We can use pivot_wider to return the data frame to its original form.

starwars_wide �� starwars_long %>%
 pivot_wider(
 names_from = attribute,
 values_from = color
)

starwars_wide

10 / 17

breed_traits %>%
 select(coat_length, coat_type) %>%
 mutate(across(c(coat_type, coat_length),tolower)) %>%
 unite(new_coat_type, c(coat_type, coat_length),
 sep = "_")

�� # A tibble: 195 × 1
�� new_coat_type
�� <chr>
�� 1 double_short
�� 2 smooth_short
�� 3 double_medium
�� 4 double_medium
�� 5 smooth_short
�� 6 curly_long
�� 7 smooth_short
�� 8 smooth_short
�� 9 smooth_short
�� 10 smooth_short
�� # ℹ 185 more rows

unite() & separate()
unite() & separate() are two very useful functions when you want to construct a new variable by combining multiple
columns into one (or separating columns that were previously joined).

• unite(data, col, ���, sep = "_", remove = TRUE, na.rm = FALSE)

11 / 17

 separate(new_coat_type, into = c("coat_type", "coat_length"))

�� # A tibble: 195 × 2
�� coat_type coat_length
�� <chr> <chr>
�� 1 double short
�� 2 smooth short
�� 3 double medium
�� 4 double medium
�� 5 smooth short
�� 6 curly long
�� 7 smooth short
�� 8 smooth short
�� 9 smooth short
�� 10 smooth short
�� # ℹ 185 more rows

unite() & separate()
unite() & separate() are two very useful functions when you want to construct a new variable by combining multiple
columns into one (or separating columns that were previously joined).

• separate(data, col, into, sep = "[^[:alnum:]]+", remove = TRUE, convert = FALSE, extra = "warn", fill =

"warn", ���)

breed_traits %>%
 select(coat_length, coat_type) %>%
 mutate(across(c(coat_type, coat_length),tolower)) %>%
 unite(new_coat_type, c(coat_type, coat_length),
 sep = "_") %>%

12 / 17

breed_traits %>%
 select(breed) %>%
 extract(breed, into = c('first_name', 'second_name'),

'(.*)��((.*)��)',
 remove = FALSE) %>%
 head

�� # A tibble: 6 × 3
�� breed first_name second_name
�� <chr> <chr> <chr>
�� 1 Retrievers (Labrador) "Retrievers " Labrador
�� 2 French Bulldogs <NA> <NA>
�� 3 German Shepherd Dogs <NA> <NA>
�� 4 Retrievers (Golden) "Retrievers " Golden
�� 5 Bulldogs <NA> <NA>
�� 6 Poodles <NA> <NA>

extract()
extract() uses powerful regular expressions to split out a column into multiple columns. In regexp we use () to
capture groups.

• extract(data, col, into, regex = "([[:alnum:]]+)", remove = TRUE, convert = FALSE, ���)

13 / 17

df �� tibble(
 group = c(1�2, 1),
 item_id = c(1�2, 2),
 item_name = c("a", "b", "b"),
 value1 = 1�3,
 value2 = 4�6
)
df %>% head

�� # A tibble: 3 × 5
�� group item_id item_name value1 value2
�� <dbl> <dbl> <chr> <int> <int>
�� 1 1 1 a 1 4
�� 2 2 2 b 2 5
�� 3 1 2 b 3 6

complete()
Sometimes we want to have our groupings complete and so we can turn our implicit missing values into explicit
missing values.

14 / 17

 complete(group,
 nesting(item_id, item_name))

�� # A tibble: 4 × 5
�� group item_id item_name value1 value2
�� <dbl> <dbl> <chr> <int> <int>
�� 1 1 1 a 1 4
�� 2 1 2 b 3 6
�� 3 2 1 a NA NA
�� 4 2 2 b 2 5

complete()
Sometimes we want to have our groupings complete and so we can turn our implicit missing values into explicit
missing values.

df �� tibble(
 group = c(1�2, 1),
 item_id = c(1�2, 2),
 item_name = c("a", "b", "b"),
 value1 = 1�3,
 value2 = 4�6
)
df %>%

15 / 17

Working with NAs in dataframe
• drop_na() drops all rows where there is a missing value
• Replace missing values with next/previous value with fill()
• Or a known value with replace_na() .

breed_traits %>%
 filter(!grepl("Hounds",coat_length)) %>%
 group_by(coat_length, coat_type) %>%
 summarise(avg_playfulness_level = mean(playfulness_level),
 .groups = "drop") %>%
 pivot_wider(names_from = "coat_type", values_from = "avg_playfulness_level")

�� # A tibble: 3 × 10
�� coat_length Corded Curly Double Rough Silky Wavy Smooth Wiry Hairless
�� <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
�� 1 Long 3 5 3.81 4 3.5 4 NA NA NA
�� 2 Medium 4 3.6 3.56 3 4.33 3 3.8 3.58 NA
�� 3 Short NA NA 3.82 NA NA NA 3.62 4 3.33

16 / 17

Working with NAs in dataframe
• drop_na() drops all rows where there is a missing value
• Replace missing values with next/previous value with fill()
• Or a known value with replace_na() .

• Use replace_na() to �ll in the missing values of the Curly column with the mean (tip, use within mutate)
• Then use fill() to �ll the values of Hairless upwards
• Lastly, drop all the rows that contain an NA with drop_na()

17 / 17

30�00

From Excel to R
(Session 2-2 - Database connections)

Connection with dbplyr

Power of dplyr and DBI
dbplyr is the database backend for dplyr. It allows you to use remote database tables as if they are in-memory data
frames by automatically converting dplyr code into SQL.

The two main libraries we are going to use is: dbplyr and DBI

library(dbplyr)
library(DBI)
con �� dbConnect(RSQLite��SQLite(), ":memory:")
copy_to(con, breed_traits)
dbDisconnect(con)

• �� dbplyr is very cool, but will limit your functionality when working in larger teams. Raw SQL is more powerful
and easier to maintain.

• �� Be careful to only use dbplyr for your data pipelines. The package is meant for Data Analysts and Data Scientist
who don't do anything with the backend databases. So best used in large teams where roles are clearly de�ned
and you only want to pull data from a database not interact with it in complex ways.

• �� Call dbDisconnect() when �nished working with a connection!

3 / 11

Power of dplyr and DBI
Lets see if our connection worked:

con �� dbConnect(RSQLite��SQLite(), ":memory:")
copy_to(con, breed_traits)
breeds_db �� tbl(con, "breed_traits")
breeds_db

�� # Source: table<breed_traits> [�� x 17]
�� # Database: sqlite 3.42.0 [:memory:]
�� breed affectionate_with_fa…¹ good_with_young_chil…² good_with_other_dogs
�� <chr> <dbl> <dbl> <dbl>
�� 1 Retriever… 5 5 5
�� 2 French Bu… 5 5 4
�� 3 German Sh… 5 5 3
�� 4 Retriever… 5 5 5
�� 5 Bulldogs 4 3 3
�� 6 Poodles 5 5 3
�� 7 Beagles 3 5 5
�� 8 Rottweile… 5 3 3
�� 9 Pointers … 5 5 4
�� 10 Dachshunds 5 3 4
�� # ℹ more rows
�� # ℹ abbreviated names: ¹affectionate_with_family, ²good_with_young_children
�� # ℹ 13 more variables: shedding_level <dbl>, coat_grooming_frequency <dbl>,
�� # drooling_level <dbl>, coat_type <chr>, coat_length <chr>,
�� # openness_to_strangers <dbl>, playfulness_level <dbl>,
�� # watchdog_protective_nature <dbl>, adaptability_level <dbl>,
�� # trainability_level <dbl>, energy_level <dbl>, barking_level <dbl>, … 4 / 11

But what if we want to see the SQL?
All dplyr calls are evaluated lazily, generating SQL that is only sent to the database when you request the data!

coat_summary �� breeds_db %>%
 group_by(coat_length) %>%
 summarise(total_shedding = sum(shedding_level))

coat_summary %>%
 show_query()

�� <SQL>
�� SELECT `coat_length`, SUM(`shedding_level`) AS `total_shedding`
�� FROM `breed_traits`
�� GROUP BY `coat_length`

coat_summary %>%
 collect()

�� # A tibble: 4 × 2
�� coat_length total_shedding
�� <chr> <dbl>
�� 1 Long 58
�� 2 Medium 212
�� 3 Plott Hounds 0
�� 4 Short 235

5 / 11

What are the most common connectors?
MySQL

RMySQL��MySQL()

PostgreSQL

RPostgreSQL��PostgreSQL()

Oracle

• �� Here be ������s!

ROracle��Oracle()

6 / 11

usethis��edit_r_environ()

mysql_user=ubuntu
mysql_passwd=my_long_password_2022
mysql_port=3310
mysql_hostname='localhost'

conn �� dbConnect(
 RMySQL��MySQL(),
 host = Sys.getenv("mysql_hostname"),
 port = Sys.getenv("mysql_port"),
 user = Sys.getenv("mysql_user"),
 password = Sys.getenv("mysql_passwd"),
 dbname = "warehouse",
 timeout = 10
)

DBI��dbGetQuery(conn, "SELECT * FROM test LIMIT 10")

DBI��dbDisconnect(conn)

Lets write a basic connector function
�� Never have plain text passwords in your code! Use the usethis package to edit your environmental variables which
can then be called.

Obviously also beware not to push your .Renviron �le to Github or similar websites.

7 / 11

Write your own connector function!

Using the information below, write your own db_query function that takes a SQL query as input, runs the query
and disconnects. Saving you a lot of time in the future!

conn �� dbConnect(
 RMySQL��MySQL(),
 host = Sys.getenv("mysql_hostname"),
 port = Sys.getenv("mysql_port"),
 user = Sys.getenv("mysql_user"),
 password = Sys.getenv("mysql_passwd"),
 dbname = "warehouse",
 timeout = 10
)

DBI��dbGetQuery(conn, "SELECT * FROM test LIMIT 10")

DBI��dbDisconnect(conn)

8 / 11

15�00

CREATE database somedb;
CREATE TABLE sometable(
id VARCHAR(32),

 date_creation DATE,
 derived_lcy DOUBLE,
 PRIMARY KEY(id, date_creation)
)
;

LOAD DATA LOCAL INFILE '/home/ubuntu/data/{filename}.csv'
INTO TABLE somedb.{tablename}
FIELDS TERMINATED BY ','
IGNORE 1 LINES
;

Loading data into DB from commandline
Before we load a dataset into a DB, we have to create the correct table format! Remember from the foundations how to
do this:

9 / 11

CREATE database somedb;
CREATE TABLE sometable(
id VARCHAR(32),

 date_creation DATE,
 derived_lcy DOUBLE,
 PRIMARY KEY(id, date_creation)
)
;

conn �� dbConnect(
 RMySQL��MySQL(),
 host = Sys.getenv("mysql_hostname"),
 port = Sys.getenv("mysql_port"),
 user = Sys.getenv("mysql_user"),
 password = Sys.getenv("mysql_passwd"),
 dbname = "warehouse",
 timeout = 10
)

DBI��dbWriteTable(conn, name = "sometable", value = df,
 append = TRUE, overwrite = FALSE)

Loading data into DB from R
Before we load a dataset into a DB, we have to create the correct table format! Remember from the foundations how to
do this:

10 / 11

Penguins database exercise

• Connect to a database.
• Load in Palmer penguins into the database (palmerpenguins��penguins).
• Use the tbl() function to make a reference to penguins to ease access to the database.
• Get the average body mass of penguins by sex and species.
• What is the most observed species on every island?
• Disconnect when �nished using the connection.

11 / 11

40�00

From Excel to R
(Session 3-1 - ggplot2 Grammer of Graphics)

Plotting with
ggplot2 �����

Examples

3 / 31

Examples

4 / 31

Examples

5 / 31

Examples

6 / 31

• General • Advanced

Best books to consult

7 / 31

Understanding ggplot2
The ggplot2 package is widely used and valued for its simple, consistent approach to making plots.

The most common aspects you will be engaging with in terms of creating a plot will be:

• aesthetics
• geometric representations
• facets
• coordinate space
• coordinate labels
• plot theme

What is important to understand is that ggplot2 is a layered interface.

8 / 31

Read in our dataset
scoobydoo �� read_csv("data/scoobydoo.csv")
head(scoobydoo)

�� # A tibble: 6 × 75
�� index series_name network season title imdb engagement date_aired run_time
�� <dbl> <chr> <chr> <chr> <chr> <chr> <chr> <date> <dbl>
�� 1 1 Scooby Doo, W… CBS 1 What… 8.1 556 1969-09-13 21
�� 2 2 Scooby Doo, W… CBS 1 A Cl… 8.1 479 1969-09-20 22
�� 3 3 Scooby Doo, W… CBS 1 Hass… 8 455 1969-09-27 21
�� 4 4 Scooby Doo, W… CBS 1 Mine… 7.8 426 1969-10-04 21
�� 5 5 Scooby Doo, W… CBS 1 Deco… 7.5 391 1969-10-11 21
�� 6 6 Scooby Doo, W… CBS 1 What… 8.4 384 1969-10-18 21
�� # ℹ 66 more variables: format <chr>, monster_name <chr>, monster_gender <chr>,
�� # monster_type <chr>, monster_subtype <chr>, monster_species <chr>,
�� # monster_real <chr>, monster_amount <dbl>, caught_fred <chr>,
�� # caught_daphnie <chr>, caught_velma <chr>, caught_shaggy <chr>,
�� # caught_scooby <chr>, captured_fred <chr>, captured_daphnie <chr>,
�� # captured_velma <chr>, captured_shaggy <chr>, captured_scooby <chr>,
�� # unmask_fred <chr>, unmask_daphnie <chr>, unmask_velma <chr>, …

9 / 31

Tell me something interesting about Scooby Doo

Tell me something interessing about this dataset...

10 / 31

30�00

Creating a base plot
Running this command will produce an empty grey panel which serves as your canvas. We need to specify how different
columns of the data frame should be represented in the plot.

scoobydoo %>% ggplot()

11 / 31

Creating a base plot
Column names are given as aesthetic elements to the ggplot function, and are wrapped in the aes() function. Note
that we can use "lazy notation" (i.e, don't need to have columns in quotes). But we still don't have anything on the
graph...

scoobydoo %>% ggplot(., aes(x = date_aired, y = run_time))

12 / 31

Geometric representations geom()
Now that we have a base layer, we need to add a geom layer (hence the + sign) of points to the plot.

• �� Its not the usual %>% but a + for ggplot2 .

scoobydoo %>%
 ggplot(., aes(x = date_aired, y = run_time)) +
 geom_point()

13 / 31

Adding color to geom()
Because its an aesthetic, the color has to go in the aes component:

scoobydoo %>%
 ggplot(., aes(x = date_aired, y = run_time, color = monster_real)) +
 geom_point()

14 / 31

What other geom_point() plots can you make?

What other interesting relationships exist within the data?

15 / 31

20�00

Learning about adding layers
In the beginning I told you ggplot allows you to add layers. What does mean? Well, lets add a geom_smooth line to our
plot:

 geom_smooth()

scoobydoo %>%
 ggplot(., aes(x = date_aired, y = run_time, color = monster_real)) +
 geom_point() +

16 / 31

What if I want to split my plot?
Well, then you are in luck, we can use a facet_wrap command to split the plots!

• facet_wrap(facets, nrow = NULL, ncol = NULL, scales = "fixed",���)

 facet_wrap(~monster_real)

scoobydoo %>%
 ggplot(., aes(x = date_aired, y = run_time, color = monster_real)) +
 geom_point() +
 geom_smooth() +

17 / 31

 xlim(as.Date("2000-01-01"), Sys.Date()) +
 ylim(0, 100)

Coordinate space & labels
We might want to adjust to coordinates that are represented on the graph. For this we can use xlim and ylim .

• �� Remember, for most graphs we want to start the graph at 0, otherwise the insight might be misleading...

scoobydoo %>%
 filter(monster_real �� "NULL") %>%
 ggplot(., aes(x = date_aired, y = run_time, color = monster
 geom_point() +
 geom_smooth() +
 facet_wrap(~monster_real) +

18 / 31

Coordinate space & labels
Currently our plot has some ugly names... lets change that and make it �������������

scoobydoo %>%
 filter(monster_real �� "NULL") %>%
 ggplot(., aes(x = date_aired, y = run_time, color = monster_real)) +
 geom_point() +
 geom_smooth() +
 facet_wrap(~monster_real) +
 xlim(as.Date("2000-01-01"), Sys.Date()) +
 ylim(0, 100) +
 labs(
 y = "Run Time (Mins)",
 x = "Date Show Aired",
 title = "Scooby Doo in the 2000s",
 subtitle = "Are monsters more real in longer shows?",
 caption = "Scooby Doo DB from TidyTuesday"
)

19 / 31

R Code ggplot

file:///home/hanjo/Dropbox/01-Briefcase/71Point4/training/training/02-R_data_analysis_workshop/sessions/03-advanced/03-01-plotting.html?panelset=r-code#panelset_r-code
file:///home/hanjo/Dropbox/01-Briefcase/71Point4/training/training/02-R_data_analysis_workshop/sessions/03-advanced/03-01-plotting.html?panelset=r-code#panelset_r-code
file:///home/hanjo/Dropbox/01-Briefcase/71Point4/training/training/02-R_data_analysis_workshop/sessions/03-advanced/03-01-plotting.html?panelset=ggplot#panelset_ggplot
file:///home/hanjo/Dropbox/01-Briefcase/71Point4/training/training/02-R_data_analysis_workshop/sessions/03-advanced/03-01-plotting.html?panelset=ggplot#panelset_ggplot

What more can we do you ask?

20 / 31

ggplot2 has hundreds of themes to choose from
Lets choose a ggthemes��theme_economist() theme and push the legend to the bottom

scoobydoo %>%
 filter(monster_real �� "NULL") %>%
 ggplot(., aes(x = date_aired, y = run_time, color = monster_real)) +
 geom_point() +
 geom_smooth() +
 facet_wrap(~monster_real) +
 xlim(as.Date("2000-01-01"), Sys.Date()) +
 ylim(0, 100) +
 labs(
 y = "Run Time (Mins)",
 x = "Date Show Aired",
 title = "Scooby Doo in the 2000s",
 subtitle = "Are monsters more real in longer shows?",
 caption = "Scooby Doo DB from TidyTuesday",
 color = "Monter Real?"
) + ggthemes��theme_economist() +
 theme(legend.position = "bottom")

21 / 31

R Code ggplot

file:///home/hanjo/Dropbox/01-Briefcase/71Point4/training/training/02-R_data_analysis_workshop/sessions/03-advanced/03-01-plotting.html?panelset1=r-code2#panelset1_r-code2
file:///home/hanjo/Dropbox/01-Briefcase/71Point4/training/training/02-R_data_analysis_workshop/sessions/03-advanced/03-01-plotting.html?panelset1=r-code2#panelset1_r-code2
file:///home/hanjo/Dropbox/01-Briefcase/71Point4/training/training/02-R_data_analysis_workshop/sessions/03-advanced/03-01-plotting.html?panelset1=ggplot2#panelset1_ggplot2
file:///home/hanjo/Dropbox/01-Briefcase/71Point4/training/training/02-R_data_analysis_workshop/sessions/03-advanced/03-01-plotting.html?panelset1=ggplot2#panelset1_ggplot2

What about going beyond basic points?
Although the geom_point was a place to start in answering our question. Perhaps another type of plot will be better
suited?

https://�owingdata.com/2009/01/15/�ow-chart-shows-you-what-chart-to-use/

22 / 31

https://flowingdata.com/2009/01/15/flow-chart-shows-you-what-chart-to-use/
https://flowingdata.com/2009/01/15/flow-chart-shows-you-what-chart-to-use/

Plotting density distributions
Our geom_point geometry didn't really provide use with the answer we needed. I think a geom_density() would be
better suited.

Using geom_density() , answer our question of: Are monsters more real (monster_real) in longer shows? ��� you
dont need a x-axis for density estimation. What happens when you use geom_density(alpha = 0.3) ?

23 / 31

30�00

Plotting density distributions
Another way of showing densities is to use boxplots!

What happens when you try geom_boxplot or geom_violin() ? Try adding a geom_jitter(position =
position_jitter(0.2)) layer and see how your chart changes

24 / 31

30�00

Exploring other type charts
Best place to look: https://r-graph-gallery.com/

25 / 31

https://r-graph-gallery.com/
https://r-graph-gallery.com/

Practice Practice Practice

Using your newly found skills and the Scooby Doo dataset. Investigate your data by plotting one plot each from
the following categories:

• Distribution

26 / 31

30�00

Practice Practice Practice

Using your newly found skills and the Scooby Doo dataset. Investigate your data by plotting one plot each from
the following categories:

• Correlation

27 / 31

30�00

Practice Practice Practice

Using your newly found skills and the Scooby Doo dataset. Investigate your data by plotting one plot each from
the following categories:

• Ranking

28 / 31

30�00

Practice Practice Practice

Using your newly found skills and the Scooby Doo dataset. Investigate your data by plotting one plot each from
the following categories:

• Evolution

29 / 31

30�00

TIVAN
Investigate ... read some data from the internet, ask question about data in viz

31 / 31

From Excel to R
(Session 3-2 - Advanced R Functional)

Making your code purrr
with purrr �������

x �� c(1�10)

empty �� vector()

for(i in 1:length(x)){
if(x[i] �� 2) {

 empty[i] �� x[i]*2
 } else {
 empty[i] �� x[i]*3
 }
}

print(empty)

�� [1] 2 6 6 12 10 18 14 24 18 30

x �� c(1�10)

addition �� function(i){
if(i �� 2) {

 out �� i*2
 } else {
 out �� i*3
 }
return(out)

}

purrr��map_dbl(x, addition)

�� [1] 2 6 6 12 10 18 14 24 18 30

Making your code purrr

Someone has to write the loop, that doesnt mean that it has to be you...

I coded like 3 bugs in the loop above before getting it right...

3 / 23

Whats happening on the right?

• Take sequence that goes from 1 to 5.
• For each of the elements in the vector

apply some function.
• Return the correct element type.

What else?

• Also, it doesnt need to be a sequence... we
can also map a tibble . ��

• Besides map , we can map2 or even pmap

x �� c(1�10)

addition �� function(i){
if(i �� 2) {

 out �� i*2
 } else {
 out �� i*3
 }
return(out)

}

purrr��map_dbl(x, addition)

�� [1] 2 6 6 12 10 18 14 24 18 30

Basics of purrr: map
So what is happening when we apply (or map) a function across an object.

4 / 23

Time to get practical

Write your own map function to paste0 a sequence of numbers with the words "the number is: {number}".

5 / 23

15�00

Basics of purrr: map2
In most cases you are not just going to give it a single vector, but perhaps two vectors. Lets extend our example from
above to use a map2

x �� c(1�10)
y �� rnorm(10)

addition_two �� function(i, j){
if(i �� 2) {

 out �� i�j
 } else {
 out �� i�j
 }

return(out)
}

purrr��map2(x, y, addition_two)

• Do you notice something about the type of output?

6 / 23

Basics of purrr: map and tibble
Playing around with vectors are important to understand the function of what map does under the hood. And as we just
saw, map on default delivers an object that is of class list ... and a tibble is a list of lists .

tibble(x = c(1�10))

�� # A tibble: 10 × 1
�� x
�� <int>
�� 1 1
�� 2 2
�� 3 3
�� 4 4
�� 5 5
�� 6 6
�� 7 7
�� 8 8
�� 9 9
�� 10 10

7 / 23

addition �� function(i){
if(i �� 2) {

 out �� i*2
 } else {
 out �� i*3
 }

return(out)
}

tibble(x = c(1�10)) %>%
 mutate(res = map(x, addition)) %>%
 head

�� # A tibble: 6 × 2
�� x res
�� <int> <list>
�� 1 1 <dbl [1]>
�� 2 2 <dbl [1]>
�� 3 3 <dbl [1]>
�� 4 4 <dbl [1]>
�� 5 5 <dbl [1]>
�� 6 6 <dbl [1]>

Basics of purrr: map and tibble
Because a tibble is a list of lists , we can just use mutate + map in very ef�cient ways. In addition, you can use the
map_* suf�ce to de�ne a speci�c output type.

8 / 23

addition �� function(i){
if(i �� 2) {

 out �� i*2
 } else {
 out �� i*3
 }

return(out)
}

 mutate(res = map_dbl(x, addition)) %>%

�� # A tibble: 6 × 2
�� x res
�� <int> <dbl>
�� 1 1 2
�� 2 2 6
�� 3 3 6
�� 4 4 12
�� 5 5 10
�� 6 6 18

Basics of purrr: map and tibble
Because a tibble is a list of lists , we can just use mutate + map in very ef�cient ways. In addition, you can use the
map_* suf�ce to de�ne a speci�c output type.

tibble(x = c(1�10)) %>%

 head

9 / 23

addition_tbl �� function(i){
if(i �� 2) {

 out �� i*2
 } else {
 out �� i*3
 }

 res �� tibble(was_div_two = i �� 2, out)

return(res)
}

tibble(x = c(1�10)) %>%
 mutate(res = map_dbl(x, addition_tbl)) %>%
 head

Error in `mutate()`:
! Problem while computing `res = map_dbl(x, addition_tbl)`.
Caused by error in `stop_bad_type()`:
! Result 1 must be a single double, not a vector of class `tbl_df/tbl/data
Run `rlang��last_error()` to see where the error occurred.

Basics of purrr: map and tibble
What is going to happen when we start doing more complex things? Like perhaps not output an integer but we output
a tibble ?

10 / 23

addition_tbl �� function(i){
if(i �� 2) {

 out �� i*2
 } else {
 out �� i*3
 }

 res �� tibble(was_div_two = i �� 2, out)

return(res)
}

 mutate(res = map(x, addition_tbl)) %>%

�� # A tibble: 6 × 2
�� x res
�� <int> <list>
�� 1 1 <tibble [1 × 2]>
�� 2 2 <tibble [1 × 2]>
�� 3 3 <tibble [1 × 2]>
�� 4 4 <tibble [1 × 2]>
�� 5 5 <tibble [1 × 2]>
�� 6 6 <tibble [1 × 2]>

Basics of purrr: map and tibble
What is going to happen when we start doing more complex things? Like perhaps not output an integer but we output
a tibble ?

• We can �x this by using the standard map function and then have the the output be a column of lists .

tibble(x = c(1�10)) %>%

 head

11 / 23

addition_tbl �� function(i){
if(i �� 2) {

 out �� i*2
 } else {
 out �� i*3
 }

 res �� tibble(was_div_two = i �� 2, out)

return(res)
}

 unnest(cols = c(res))

�� # A tibble: 6 × 3
�� x was_div_two out
�� <int> <dbl> <dbl>
�� 1 1 1 2
�� 2 2 0 6
�� 3 3 1 6
�� 4 4 0 12
�� 5 5 1 10
�� 6 6 0 18

Basics of purrr: map and tibble
What is going to happen when we start doing more complex things? Like perhaps not output an integer but we output
a tibble ?

• We can �x this by using the standard map function and then have the the output be a column of lists . Then using
unnest to unnest our nested tibble .

tibble(x = c(1�10)) %>%
 mutate(res = map(x, addition_tbl)) %>%
 head %>%

12 / 23

TIVAN
Do something with map_* chr and lgl

13 / 23

Basics of purrr: pmap
Last of the powerful map functions is pmap , which means parallel mapping, not to be confused with executing in
parallel.

df �� tibble(x = rnorm(5),
 y = rnorm(5),
 z = rnorm(5))

pmap(df, sum)

So, we can see that pmap executes a function across a row.

14 / 23

df �� tibble(x = rnorm(5),
 y = rnorm(5),
 z = rnorm(5))

df %>%
 mutate(output = pmap_dbl(., sum))

df �� tibble(x = rnorm(5),
 y = rnorm(5),
 z = rnorm(5),
 a = rnorm(5))

product_all �� function(x, y, z){
 x * y * z
}

df %>%
 mutate(output = pmap_dbl(list(x, y, z), product_all))

Basics of purrr: pmap
Executing across a row can be very useful if you have functions with multiple inputs and dont want to specify them all.

15 / 23

TIVAN
pmap function

16 / 23

• Filter

◦ pluck & chuck
◦ keep

◦ discard

◦ compact

• Reshaping

◦ flatten

◦ nest

◦ group_nest

• Manipulate

◦ every

◦ some

◦ has_element

◦ detect

◦ detect_index

• Combine

◦ append

◦ prepend

◦ cross_df

◦ reduce

◦ accumulate

Other functions in purrr
The purrr library is not just about using map function on lists. It also has a whole range of amazing functions to help
�lter and manipulate lists. Although you might not use all of these all the time, they are good to know.

17 / 23

Back to scooby ��������

Back to scooby ��������
scoobydoo �� read_csv("data/scoobydoo.csv")

Show 3 entries Search:

Showing 1 to 3 of 603 entries Previous 1 2 3 4 5 … 201 Next

index ▲
▼ series_name ▲

▼ network ▲
▼ season ▲

▼ title ▲
▼ imdb ▲

▼ engagement ▲
▼ date_aired ▲

▼ run_time ▲
▼

1
Scooby Doo,
Where Are
You!

CBS 1

What a
Night
for a
Knight

8.1 556 1969-09-13 21

2
Scooby Doo,
Where Are
You!

CBS 1

A Clue
for
Scooby
Doo

8.1 479 1969-09-20 22

3
Scooby Doo,
Where Are
You!

CBS 1
Hassle
in the
Castle

8 455 1969-09-27 21

19 / 23

lm(imdb ~ run_time, data = df)

��
�� Call:
�� lm(formula = imdb ~ run_time, data = df)
��
�� Coefficients:
�� (Intercept) run_time
�� 7.468733 -0.008102

What if we want to investigate seasons?
Lets start by investigating the relationship between run time and imdb ratings?

df �� scoobydoo %>% select(season, imdb, run_time) %>%
 mutate(imdb = as.numeric(imdb)) %>%
 drop_na()

df %>%
 ggplot(., aes(imdb, run_time, color = season)) +
 geom_point()

20 / 23

lm_seasons�� function(season_information){
 lm(imdb ~ run_time, data = season_information)
}

lm_tidy�� function(lm_model){
 lm_model %>% broom��tidy() %>%
 filter(term �� "run_time")
}

scoobydoo %>% select(season, imdb, run_time) %>%
 mutate(imdb = as.numeric(imdb)) %>%
 drop_na() %>%
 group_nest(season) %>%
 filter(map_lgl(data, ~nrow(.x)> 20)) %>%
 mutate(
 lm_res = map(data, lm_seasons),
 lm_beta = map(lm_res, lm_tidy)
)

�� # A tibble: 4 × 4
�� season data lm_res lm_beta
�� <chr> <list<tibble[,2]�� <list> <list>
�� 1 1 [311 × 2] <lm> <tibble [1 × 5]>
�� 2 2 [149 × 2] <lm> <tibble [1 × 5]>
�� 3 3 [60 × 2] <lm> <tibble [1 × 5]>
�� 4 Movie [42 × 2] <lm> <tibble [1 × 5]>

What if we want to investigate seasons?
Lets start by investigating the relationship between run time and imdb ratings?

21 / 23

What if we want to investigate seasons?
We can now unnest the output of our functions to see what the relationship is:

scoobydoo %>% select(season, imdb, run_time) %>%
 mutate(imdb = as.numeric(imdb)) %>%
 drop_na() %>%
 group_nest(season) %>%
 filter(map_lgl(data, ~nrow(.x)> 20)) %>%
 mutate(
 lm_res = map(data, lm_seasons),
 lm_beta = map(lm_res, lm_tidy)
) %>%
 unnest(lm_beta) %>%
 janitor��clean_names()

�� # A tibble: 4 × 8
�� season data lm_res term estimate std_error statistic p_value
�� <chr> <list<tibble[,2]�� <list> <chr> <dbl> <dbl> <dbl> <dbl>
�� 1 1 [311 × 2] <lm> run_ti… 0.0297 0.00421 7.04 1.22e-11
�� 2 2 [149 × 2] <lm> run_ti… 0.0230 0.00881 2.61 1.00e� 2
�� 3 3 [60 × 2] <lm> run_ti… 0.0171 0.00459 3.72 4.45e� 4
�� 4 Movie [42 × 2] <lm> run_ti… -0.0108 0.0138 -0.784 4.38e� 1

22 / 23

TIVAN
Execute a pmap idea

23 / 23

From Excel to R
(Session 4-1 - Xaringan)

Making slides like
a ninja �������

Mixing R and output
library(palmerpenguins)
penguins %>%
 ggplot(., aes(body_mass_g, bill_length_mm, color = sex)) +
 geom_point()

3 / 12

This is a transition slide

Nothing wrong with adding a GIF

5 / 12

Nice background

Or perhaps two pictures side by side

7 / 12

Lets start

What is {xaringan}?
• With xaringan you can easily generate HTML5 presentations.
• The xaringan package is an R Markdown extension based on the JavaScript library remark.js.
• To learn more about xaringan , review the excellent xaringan introduction from the package's author Yihui Xi.

The name "xaringan" came from Sharingan (http://naruto.wikia.com/wiki/Sharingan) in the Japanese manga
and anime "Naruto." The word was deliberately chosen to be dif�cult to pronounce for most people (unless you
have watched the anime), because its author (me) loved the style very much, and was concerned that it would
become too popular.

— Yihui

9 / 12

https://remarkjs.com/
https://remarkjs.com/
https://bookdown.org/yihui/rmarkdown/xaringan.html
https://bookdown.org/yihui/rmarkdown/xaringan.html
http://naruto.wikia.com/wiki/Sharingan
http://naruto.wikia.com/wiki/Sharingan

Installing {xaringan} and creating slide
• As you should know by now, its not very dif�cult to install packages in R

install.packages("xaringan")

• De�ning a new slide:

���
class: .large

Installing {xaringan}

• De�ning a speci�c type of slide:

���
class: clear, no_number, transition

Lets start

10 / 12

Changing the CSS
We de�ne the CSS output in a .css (cascading style sheet) �le. In your projects, you can change the color of your top
bar by changing the following line in the gen_theme.css �le:

border�top: 80px solid #01524a;

• There is a lot more to explore! So play around in the gen_theme.css �le to �nd out how I customized the slides!

.remark�slide�content {
background�color: #FFFFFF;

font�size: 20px;
font�weight: 300;
line�height: 1.5;
padding: 1em 2em 1em 2em

}

11 / 12

Rate the course!
https://forms.gle/ZEE5xVk7HYnphZQx5

12 / 12

https://forms.gle/ZEE5xVk7HYnphZQx5
https://forms.gle/ZEE5xVk7HYnphZQx5

