
Learning FastApi with Docker

1) About this Course
2) Software Requirements
3) Why FastAPI & Docker

2 / 37

About this Course

What this course aims to achieve
What the course aims to achieve:

On completion of the workshop, participants should be able to (1) understand basic concepts of
dockerization, (2) implement template example of FastApi and docker.

This workshop focuses on DevOps (or Development operations). The main focus is on the introduction of moving from
sandbox to production.

We did this not because it is easy, but because we thought it would be easy!

This is a high level course and what the course does will NOT achieve is:

It will NOT turn individuals into DevOps experts. The aim is to provide participants with practical examples
in order to recognize life implementations implications.

• We wish to elevate people's knowledge and exposure to basic development operations principles to help guide
them on their data journey.

4 / 37

You should:

• Talk about docker as a management tool
• Understand API architecture

We also encourage the following behaviour throughout the
course:

• Learn from each other and share knowledge in groups.
• Ask questions during the course - the instructor has a

lot of knowledge that you should tap.

Key outcomes

5 / 37

Monday 11th December (14:00 - 16:30):

• Course introduction.
• Install software for course.
• Linux basics review
• Learning about virtual environments
• Quarto and VSCode

Tuesday 12th December (10:00 - 12:30):

• Introduction to docker

Session Breakdown: Setup

6 / 37

Tuesday 12th December (14:00 - 16:30):

• Introduction to APIs (theory)

Wednesday 13th December (14:00 - 16:30):

• Dockerised API

Session Breakdown: API

7 / 37

Thursday 14th December (14:00 - 16:30):

• Dockerised API & dbutils

Session Breakdown: API
Friday 15th December (14:00 - 16:30):

• Dockerised API & dbutils

]

8 / 37

• Interact with a remote server
• Connect to database on remote server
• Execute code and download results

Learning to code in VSCode
Why switch from RStudio to VSCode for SQL development?

The �rst few things we are gonna do in VSCode is:

9 / 37

Connecting to remote development environment
As in most instances, you will likely be developing code on a remote machine, but would like to use VSCode as your
development environment.

This can easily be achieved using the Remote-SSH feature in the IDE. This allows for:

• Develop on the same operating system you deploy to or use larger, faster, or more specialized hardware than your
local machine.

• Quickly swap between different, remote development environments and safely make updates without worrying
about impacting your local machine.

• Access an existing development environment from multiple machines or locations.
• Debug an application running somewhere else such as a customer site or in the cloud.

10 / 37

• Once in the command console, type Remote SSH
and the search bar should come up with a
couple of options.

• Select Remote-SSH� Connect to Host .
• In both Linux and Windows the easiest is to

create a .ssh/vscode�config �le

Connecting to remote development environment
One of the most used shortcuts in VSCode you will use is Ctrl + Shift + P . This takes you to the IDE's
command console.

11 / 37

• Once in the command console, type Remote SSH
and the search bar should come up with a
couple of options.

• Select Remote-SSH� Connect to Host .
• In both Linux and Windows the easiest is to

create a .ssh/vscode�config �le

Connecting to remote development environment
One of the most used shortcuts in VSCode you will use is Ctrl + Shift + P . This takes you to the IDE's
command console.

12 / 37

• Once in the command console, type Remote SSH
and the search bar should come up with a
couple of options.

• Select Remote-SSH� Connect to Host .
• In both Linux and Windows the easiest is to

create a .ssh/vscode�config �le

Connecting to remote development environment
One of the most used shortcuts in VSCode you will use is Ctrl + Shift + P . This takes you to the IDE's
command console.

13 / 37

• Once in the command console, type Remote SSH
and the search bar should come up with a
couple of options.

• Select Remote-SSH� Connect to Host .
• In both Linux and Windows the easiest is to

create a .ssh/vscode�config �le

Connecting to remote development environment
One of the most used shortcuts in VSCode you will use is Ctrl + Shift + P . This takes you to the IDE's
command console.

14 / 37

• Once in the command console, type Remote SSH
and the search bar should come up with a
couple of options.

• Select Remote-SSH� Connect to Host .
• In both Linux and Windows the easiest is to

create a .ssh/vscode�config �le

Connecting to remote development environment
One of the most used shortcuts in VSCode you will use is Ctrl + Shift + P . This takes you to the IDE's
command console.

15 / 37

Install OpenSSH for Windows
• To install OpenSSH using PowerShell, run PowerShell as an Administrator . To make sure that OpenSSH is available,

run the following cmdlet :

Get-WindowsCapability -Online | Where-Object Name �like 'OpenSSH*'

• Install the OpenSSH Client

Add-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0

• Test the service

ssh 183.204.102.12\ubunto@servername

16 / 37

Logging into Server

What is shell?
Whenever we talk about black screen, command line or shell we are essentially talking about the interface that takes
input from the keyboard and sends it to the operating system (OS).

Almost all Linux distributions supply a shell program from the GNU Project called bash that looks like this:

hanjo@optimus:~$ penguin

This interface is called shell prompt and usually contains username@machinename:directory . If the last character of the
prompt is a hash mark (#) rather than a dollar sign ($), the terminal session has superuser privileges (a little bit
more on this later).

• Pressing the up ��� arrow on your keyboard goes into your command history.
◦ Be aware that history stores about 1,000 commands.

18 / 37

Different type of users

Superuser (root)
With great power comes great responsibility!

19 / 37

On a Linux system Superuser refers to the root user, who has unlimited
access to the �le system with privileges to run all Linux commands.

• This responsibility is mostly given to experienced SysAdmins. The
reason being there is no "take-backsies" in linux. Once a command
has been executed under sudo (superuser do) , there is almost
never a way to reverse the execution (ex. deleting a �le).

• The Superuser/Root is also responsible for setting up security and
thus, limiting the power to a single (or very few individuals is
preferred).

Different type of users

Superuser (root)
With great power comes great responsibility!

20 / 37

Basic shell commands
Try these basic commands:

date

�� Thu 30 May 2024 16�07�46 SAST

free �h

�� total used free shared buff/cache available
�� Mem: 62Gi 7.1Gi 41Gi 2.4Gi 13Gi 52Gi
�� Swap: 19Gi 0B 19Gi

cal

�� May 2024
�� Su Mo Tu We Th Fr Sa
�� 1 2 3 4
�� 5 6 7 8 9 10 11
�� 12 13 14 15 16 17 18
�� 19 20 21 22 23 24 25
�� 26 27 28 29 30 31
�� 21 / 37

Welcome to your new home
Welcome to your new home, or 127.0.0.1 as I would like to call it.

hanjo@optimus:~$ ls �lart

�� total 20
�� drwxr�xr�x 6 root root 4096 Dec 19 13�05 ��
�� �rw�r��r�� 1 hanjo hanjo 807 Dec 19 13�05 .profile
�� �rw�r��r�� 1 hanjo hanjo 3771 Dec 19 13�05 .bashrc
�� �rw�r��r�� 1 hanjo hanjo 220 Dec 19 13�05 .bash_logout
�� drwxr�xr�x 2 hanjo hanjo 4096 Dec 19 13�05 .

• Can anyone tell me what they think the �rw�r��r�� stands for?

Although we will not go deep into security in this course, it is good to understand some basics.

22 / 37

Permissions
Owners, Group Members, and Everybody Else

One of the fundamentals that were built into Linux systems from the start is the concept of it being a multiuser system.
This means that multiple users can log into the system at the same time without interfering (mostly) with each others
processes and �les.

In the Linux security model, a user may own �les and directories.

• When a user owns a �le or directory, the user has control over its access.
• Users can, in turn, belong to a group consisting of one or more users who are given access to �les and directories

by their owners.
• An owner may also grant some set of access rights to everybody, which in Linux terms is referred to as the world.

23 / 37

Permissions
Owners, Group Members, and Everybody Else

How does this look for the user I just created?

And for Superuser ubuntu ?

ubuntu@optimus:~$ id ubuntu
�� uid=1000(ubuntu) gid=1000(ubuntu) groups=1000(ubuntu),4(adm),20(dialout),24(cdrom),25(floppy),27(sudo),29(audio),30(dip),44(video

24 / 37

Basic Commands ������

Listing directories
To �nd out where in the tree you are, we can use a simple command called: pwd

hanjo@optimus:~$ pwd
�� /home/hanjo

Upon logging into a system, the terminal will always set your working directory to home also known as ~ .

• If you log in as a regular user, your home directory is the only place where you will be able to write and create �les.

So, now that we are in the system, what directories are in my home folder ?

hanjo@optimus:~$ ls
�� Data Desktop Documents Pictures

To list the �les and directories in the current working directory, we use the ls command. This command is very
versatile as you will see in a minute.

*

 Yours might look a bit different depending whether you are running Linux on a server or a desktop.*

26 / 37

Changing the current working directory
Obviously looking at �les in your home directory doesn't take you very far. We need to be able to navigate the �le
system in a quick and ef�cient manner.

The cd command in Linux is a powerful way to navigate the tree folder structure that is the �le system.

hanjo@optimus:~$ cd Data
hanjo@optimus:~/Data$

The two main methods for traversing the tree is: (1) Absolute Paths and (2) Relative Paths:

• Absolute Paths begins with the root redirectory / and expands to the folder you are interested in: /home/hanjo/
Data

• Relative Paths starts at the working directory and starts navigation from there. These paths have a special
notation, a single dot (.) and a dot dot (��). The . notation refers to the working directory, and the �� notation
refers to the working directory’s parent directory.

27 / 37

Changing the current working directory
Lets see an example of the absolute and relative path in action. Start by navigating the /usr/bin directory and listing
all the �les.

hanjo@optimus:~$ cd /usr/bin
hanjo@optimus:/usr/bin$ pwd
#/usr/bin
hanjo@optimus:/usr/bin$ ls
�� 2to3-2.7 funzip mpiCC splitfon ���

Now lets move to the /usr directory from our working directory /usr/bin . There are two ways to do this, either
absolute (cd /usr) or relative. Let us practice using the relative method.

hanjo@optimus:~$ cd /usr/bin
hanjo@optimus:/usr/bin$ cd ��
hanjo@optimus:/usr$ pwd
/usr
hanjo@optimus:/usr$ ls
bin/ games/ include/ lib/ lib32/ local/ sbin/ share/ src/

28 / 37

Changing the current working directory
There are also some nice shortcuts to be aware of:

• Change the working directory to your home directory: cd ~
• Change the working directory to the previous working dir: cd -
• Change the working directory to a speci�c user: cd ~ubuntu

29 / 37

Notes about �lenames in Linux
Filenames in Linux are quite special and if you have worked closely with someone who works in Linux, you would have
noticed some things. First and foremost:

• NEVER use a space in �lenames use an underscore (_) instead - thank me later ;-)
◦ ex. this file Name SUCKS 1/30/23.txt where this_is_much_better.txt

• Filenames that start with a . are hidden �les. The ls command will not list these unless you use a parameter ls

�a . These �les usually relate to con�guration settings.
◦ ex. .bashrc .

• CASE MATTERS, so dont ever use Capitals for folders or �lenames - it gets confusing.
◦ ex. This/path/IS/different/ . from /this/path/is/different/

• Linux does not have any concept of "�le extensions". So remember to name your �les in an appropriate manner if
you would like them to be readable by the correct application.
◦ ex. mypdffile and mypdffile.pdf is the same

See this presentation by Dr. Anna Krystalli for further tips on �le naming.

30 / 37

https://annakrystalli.me/rrresearch/03_filenaming.html#1
https://annakrystalli.me/rrresearch/03_filenaming.html#1

Creating �les and folders
Apart from knowing how to navigate folders, we must also know how to create �les and folders.

The basic commands for this is:

• Create folder

mkdir scripts
mkdir scripts data analysis

• Create �le

touch analysis.R

90% of the time you will be using the basic versions of these commands. But they can also do some pretty interesting
things.

31 / 37

Tricks and Tips for mkdir
• Create folders within folders that do not already exist (recursively create).

mkdir project/analysis/scripts
mkdir: cannot create directory ‘project/analysis/scripts’: No such file or directory

Correct usage
mkdir �p project/analysis/scripts

• What if I wanted to create a data , scripts and output folder in a single line?

Note, there is NO spaces in the array
mkdir �p project/analysis/scripts/{data,scripts,output}
cd project/analysis/scripts/ �� ll

• Current date in directory name

mkdir `date '+%Y%m%d'`

32 / 37

Viewing contents of �les
To view the contents of a �le, we use a program called less .

The less program was designed as an improved replacement of an earlier Unix program called more . The
name less is a play on the phrase "less is more" — a motto of modernist architects and designers.

more (developed in 1978) was replaced by less in 1983, �rst and foremost because more could only scroll forwards
through a text �le. less was written by Mark Nudelman and is currently being maintained by him to this day!

• Backwards movement
• Searching and highlighting
• Multiple �les

◦ Less allows you to switch between any number of different �les, remembering your position in each �le. You
can also do a single search which spans all the �les you are working with.

• Advanced features
◦ You can change key bindings, set different tab stops, set up �lters to view compressed data or other �le types,

customize the prompt, display line numbers, use "tag" �les, and more.

http://www.greenwoodsoftware.com/less/faq.html#mail

33 / 37

http://www.greenwoodsoftware.com/less/faq.html#mail
http://www.greenwoodsoftware.com/less/faq.html#mail

Redirection in Linux �����������

Redirection & Piping
This is maybe one of the coolest features of command line that you will learn: Redirecting or piping your results into
another command. The Input/Output allows us to chain together commands and build pipelines of instructions.

• I/O redirection (>) allows us to change where output goes and where input comes from.
◦ A good example of this would be the ls command we learned earlier.

hanjo@optimus0�~$ ls �l
hanjo@optimus0�~$ ls �l > all_files.txt
hanjo@optimus0�~$ less all_files.txt

We can also append a �le using (��):

hanjo@optimus0�~$ ls �l �� all_files.txt
hanjo@optimus0�~$ ls �l �� all_files.txt
hanjo@optimus0�~$ ls �l �� all_files.txt
hanjo@optimus0�~$ less all_files.txt

35 / 37

Redirection & Piping
In the previous examples we redirected only the stdout of the command. But, we sometimes also want to redirect the
errors or Standard Error (stderr).

To do this we add an additional command to the end of the line (2>&1):

hanjo@optimus0�~$ ls �l > all_files.txt 2>&1
hanjo@optimus0�~$ less all_files.txt

We redirect �le descriptor 2 (standard error) to �le descriptor 1 (standard output) using the notation 2>&1 .

Once we know the concept of standard output and input, we can start stringing commands together. These are called
pipelines and it looks this, command1 pipes into command2 :

command1 | command2

Here we can see that command2 takes command1 's output as its input. As you get more comfortable with the terminal,
these become core concepts you will use every day.

36 / 37

• Remote -SSH
• Rainbow CSV
• autopep8
• R Extension for Visual Studio Code
• Spelling Checker for Visual Studio Code
• SQLTools

Installing the recommended Extension
Installing Extensions in VSCode is pretty straight forward. Just navigation to the search tab using GUI. Then search and
install the following:

• Linux shortcut

wget -O extentions.sh https:��bit.ly/3GrF5kn
bash extentions.sh

37 / 37

APIs

De�nition
API is the acronym for Application Programming Interface. An API is made up of a set of de�ned rules that enables the
communication between the different applications

2 / 70

How does an API work?
For two software applications to integrate over the internet, one application — called the client — sends a request to
the other application’s API. Upon receiving and validating the client’s request, the API performs the requested action,
then sends a response back to the client. This response includes the status of the request (e.g., completed or denied)
and any resources requested.

Steps:

�. Request
�. Validate
�. Respond

3 / 70

Making a simple API call

1. Find the URI of the external server or program
To make an API call, the �rst thing you need to know is the Uniform Resource Identi�er (URI) of the server or external
program from which you want the data. This is basically the digital equivalent of a home address.

The Cat Facts API URI, for example is https://catfact.ninja

2. Add an HTTP verb
Once you have the URI, then you need to know how to formulate the request.

The �rst thing you need to include is a request verb. The four most basic request verbs are:

• GET: To retrieve a resource
• POST: To create a new resource
• PUT: To edit or update an existing resource
• DELETE: To delete a resource

4 / 70

https://catfact.ninja/
https://catfact.ninja/

Making a simple API call (continue)

Example (Phyton)
Calling an API to get a random fun cat fact.

Request

import requests

api_url = 'https:��catfact.ninja/fact'
response = requests.get(api_url)

print(response.text)

Response

{"fact":"Cats often overract to unexpected stimuli because of their extremely sensitive nervous system.","length"

5 / 70

APIs vs. Web Services
A web service is a software component that can be accessed and used to facilitate data transfers via a web address.
Because a web service exposes an application’s data and functionality to other applications, in effect, every web service
is an API.

However, not every API is a web service. APIs are any software component that serves as an intermediary between two
disconnected applications and does therefore not necessarily rely on using a web address.

6 / 70

Sprawl of APIs
APIs are increasingly recognised as a major driver of innovation, value creation, and revenue. From digital marketplaces
and entertainment apps to the Internet of Things (IoT) and Information Technology (IT) microservices, APIs are at the
heart of how the world conducts business. It is estimated by f5 -- leading technology company -- that the number of
public and private APIs in 2021 was in the range of 200 million, and by 2031 that number could be in the billions.

7 / 70

https://www.f5.com/
https://www.f5.com/

Different types of APIs
There are four different types of APIs commonly used: public, partner, private and composite. The API "type" indicates
the intended scope of use.

1. Public/open/external
A public/open/external API is open and available for use by any outside developer or business. An enterprise that
cultivates a business strategy that involves sharing its applications and data with other businesses will develop and
offer a public API. These public APIs typically involve moderate authentication and authorisation. Enterprises might also
seek to monetise their APIs by imposing a per-call cost to utilise the public API.

8 / 70

Different types of APIs (continue)

2. Internal/private
An internal/private API is intended only for use within the enterprise to connect systems/applications and data within
the business. For example, an internal API might connect an organisation's payroll and Human resources (HR) systems.
Internal APIs traditionally present weak security and authentication -- or none at all -- because the APIs are intended
for internal use, and such security levels are assumed to be in place through other policies. This however is changing,
as greater threat awareness and regulatory compliance demands increasingly in�uence an organisation's API strategy.

9 / 70

Different types of APIs (continue)

3. Composite
Composite APIs generally combine two or more APIs to craft a sequence of related or interdependent operations.
Composite APIs can be bene�cial to address complex or tightly related API behaviours and can sometimes improve
speed and performance over individual APIs.

10 / 70

Different types of APIs (continue)

4. Partners
A partner API, only available to speci�cally selected and authorised outside developers or API consumers, is a means to
facilitate business-to-business activities. For example, if a business wants to selectively share its customer data with
outside Customer Relationship Management (CRM) �rms, a partner API can connect the internal customer data system
with those external parties -- no other API use is permitted. Partners have clear rights and licences to access such APIs.
For this reason, partner APIs generally incorporate stronger authentication, authorisation and security mechanisms.
Enterprises also typically do not monetise such APIs directly; partners are paid for their services rather than through
API use.

11 / 70

Why are APIs used?

Bene�ts of using APIs
There are several bene�ts to using APIs when setting up couplings between systems. Five main bene�ts of APIs are:

1. Improved collaboration
The average enterprise uses several different applications, many of which are disconnected. APIs enable integration so
that these platforms and apps can seamlessly communicate with one another. Through this integration, companies can
automate work�ows and improve workplace collaboration and restrict the formation of information silos that
compromise productivity and performance.

2. Accelerated innovation
APIs offer �exibility, allowing companies to make connections with new business partners, offer new services to their
existing market, and, ultimately, access new markets that can generate massive returns and drive digital transformation.

13 / 70

Bene�ts of using APIs (continue)

3. Data monetisation
Many companies choose to offer APIs for free, at least initially, so that they can build an audience of developers around
their brand and forge relationships with potential business partners. If the API grants access to valuable digital assets,
the business can monetise it by selling access. This monetisation of APIs is known as the API economy.

4. System security
APIs separate the requesting application from the infrastructure of the responding service, and offer layers of security
between the two as they communicate.

5. End-user security and privacy
APIs also provide another layer of protection for personal users. When a website requests a user’s location, which is
provided via a location API, the user can then decide whether to allow or deny this request. Many web browsers and
mobile operating systems have permission structures built-in when APIs request access to applications and their data.
When the app must access �les through an API, the operating system will use permissions for that access.

14 / 70

Protocols/Architectures

What are API protocols/architectures?
APIs exchange commands and data, and this requires clear protocols or architectures -- the rules, structures and
constraints that govern an API's operation.

Today, there are four main categories of API protocols or architectures: REST, RPC, SOAP and GraphQL (there are a few
other, less common protocols as well). Each of these architectures has unique characteristics and trade offs and is
employed for different purposes.

16 / 70

Common protocols/architectures

1. REST
The Representational State Transfer (REST) architecture is perhaps the most popular approach to building APIs. REST
relies on a client/server approach that separates front and back ends of the API and provides considerable �exibility in
development and implementation. REST is stateless, which means the API stores no data or status between requests.
REST supports caching, which stores responses for slow or non-time-sensitive APIs. REST APIs, usually termed RESTful
APIs, can also communicate directly or operate through intermediate systems such as API gateways and load balancers.

17 / 70

Common protocols/architectures (continue)

2. RPC
The Remote Procedural Call (RPC) protocol is a simple means to send multiple parameters and receive results. RPC APIs
invoke executable actions or processes, while REST APIs mainly exchange data or resources such as documents. RPC
can employ two different languages, JavaScript Object Notation (JSON) and eXtensible Markup Language (XML), for
coding; these APIs are dubbed JSON-RPC and XML-RPC, respectively.

18 / 70

Common protocols/architectures (continue)

3. SOAP
The Simple Object Access Protocol (SOAP) is a messaging standard de�ned by the World Wide Web (WWW) Consortium
and broadly used to create web APIs, usually with XML. SOAP supports a wide range of communication protocols found
across the internet, such as Hypertext Transfer Protocol (HTTP), Simple Mail Transfer Protocol (SMTP) and Transmission
Control Protocol/Internet Protocol (TCP/IP). SOAP is also extensible and style-independent, which enables developers to
write SOAP APIs in varied ways and easily add features and functionality. The SOAP approach de�nes how the SOAP
message is processed, the features and modules included, the communication protocol(s) supported and the
construction of SOAP messages.

19 / 70

Common protocols/architectures (continue)

4. GraphQL
GraphQL is a query language and server-side runtime for APIs that prioritises giving clients exactly the data they
request and no more. GraphQL is designed to make APIs fast, �exible, and developer-friendly. It can even be deployed
within an Integrated Development Environment (IDE) known as GraphiQL. As an alternative to REST, GraphQL lets
developers construct requests that pull data from multiple data sources in a single API call. Additionally, GraphQL gives
API maintainers the �exibility to add or deprecate �elds without impacting existing queries. Developers can build APIs
with whatever methods they prefer, and the GraphQL speci�cation will ensure they function in predictable ways to
clients.

20 / 70

Diffrence between protocols/architectures

21 / 70

Choosing the correct API
Whatever API protocol/architecture you choose to use there are several important factors that developers should
consider when choosing an API.

1. Clear and complete documentation
APIs are software, and like any software, they require comprehensive documentation that provide developers with how-
to guidance, reference usage and example use cases designed to help developers apply the API quickly and
successfully.

2. Easy adoption
Choose a simple API, establish an easy method of acquiring the API and ensure solid and knowledgeable API support
that can address any developer questions.

22 / 70

Choosing the correct API (continue)

3. Ease of use
A good API is simply easy to use with sensible and intuitive call structures. Simplicity, consistency, clarity and backward
compatibility -- involving clear deprecation -- are hallmarks of a good API.

4. Stability and reliability
Good APIs are developed just like any other software, this includes comprehensive testing for bugs and clear metrics
for scalability and performance.

5. Security
APIs must support security through clear authentication -- where only authorised users can use the API. In addition,
any data exchanged across the API should be encrypted or otherwise shielded from snooping and theft.

23 / 70

APIs in action
APIs have become a valuable aspect of modern business that we as users interact with every day. Here are some
popular examples of API uses that users encounter almost every day.

1. Universal logins
A popular API example is the function that enables people to log in to websites by using their Facebook, Twitter, or
Google pro�le login details. This convenient feature allows any website to leverage an API from one of the more popular
services for quick authentication, saving them the time and hassle of setting up a new pro�le for every web application
or new membership.

24 / 70

https://developers.facebook.com/products/facebook-login/
https://developers.facebook.com/products/facebook-login/
https://developer.twitter.com/en/docs/authentication/guides/log-in-with-twitter
https://developer.twitter.com/en/docs/authentication/guides/log-in-with-twitter

APIs in action (continue)

2. Internet of Things (IoT)
These “smart devices” offer added functionality, such as internet-enabled touchscreens and data collection, through
APIs. For example, a smart fridge can connect to recipe applications or take and send notes to mobile phones via text
message. Internal cameras connect to various applications so that users can see the contents of the refrigerator from
anywhere.

25 / 70

APIs in action (continue)

3. Travel booking comparisons
Travel booking sites aggregate thousands of �ights, showcasing the cheapest options for every date and destination.
This service is made possible through APIs that provide application users with access to the latest information about
availability from hotels and airlines, either via a web browser or the travel booking company’s own application. With an
autonomous exchange of data and requests, APIs drastically reduce the time and effort involved in checking for
available �ights or accommodation.

26 / 70

APIs in action (continue)

4. Mapping apps
In addition to the core APIs that display static or interactive maps, these apps use other APIs and features to provide
users with directions, speed limits, points of interest, traf�c warnings and more. Users communicate with an API when
plotting travel routes or tracking items on the move, such as a delivery vehicle.

27 / 70

APIs in action (continue)

5. SaaS applications
APIs are an integral part of the growth in Software-as-a-Service (SaaS) products. Platforms like Customer Relationship
Management Tools (CRM) often include a number of built-in APIs that let companies integrate with applications they
already use, such as messaging, social media, and email apps. This drastically reduces time spent switching between
applications for sales and marketing tasks. It also helps reduce or prevent data silos that may exist between
departments using different applications.

28 / 70

REST API

History
REST was developed towards the end of the 1990s and fundamentally changed the API landscape. The �rst companies
to use a REST API were eBay and Amazon. Only a selection of partners got access to eBay’s well documented and user-
friendly REST API. As a result, eBay’s marketplace was not only accessible through direct visits but through any website
that accessed the eBay API.

Flickr also launched a REST API in 2004, just in time for the rise of social networking and blogs on the web. This paved
the way for social sharing, which Facebook and Twitter later joined.

30 / 70

The six principles of REST
The REST API is founded on 6 principles.

1. Client-server architecture
The principle behind the client-server architecture is the separation of problems. Dividing the user interface from data
storage improves the portability of that interface across multiple platforms. It also has the advantage that different
components can be developed independently from each other.

2. Statelessness
Statelessness means that the communication between client and server always contains all the information needed to
execute the request. There is no session state on the server, it is kept entirely on the client. If access to a resource
requires authentication, the client must authenticate itself on each request.

31 / 70

The six principles of REST (continue)

3. Caching
The client, server, and any intermediate components can cache all resources to improve performance. The information
can be classi�ed as cacheable or non-cacheable.

4. Uniform interface
All components of a RESTful API have to follow the same rules to communicate with each other. This also makes it
easier to understand interactions between the various components of a system.

5. Layered system
Individual components cannot see beyond the immediate level they interact with. This means that a client that
connects to an intermediate component such as a proxy does not know what is behind it. Therefore, components can
be easily exchanged or expanded independently of each other.

32 / 70

The six principles of REST (continue)

6. Code-on-demand
Additional code can be downloaded to extend client functionality. However, this is optional because the client may not
be able to download or execute this code.

33 / 70

The advantages of REST
The complete separation of the user interface from server and data storage offers some advantages for the
development of an API.

Example:

• Improves the portability of the interface
• Increases project scalability
• Indipendent development
• Increases overall �exibility

A REST API is always independent of the type of platform or languages used, it adapts to the type of syntax or platform
used. This provides great freedom when changing or testing new environments within a development. You can use PHP,
Java, Python or Node.js servers with a REST API. Only responses to requests must be in the language used for
information exchange, usually XML or JSON.

34 / 70

What is an API Endpoint?

De�nition
An endpoint is one end of a communication channel. When an API interacts with another system, the touchpoints of
this communication are considered endpoints. For APIs, an endpoint can include a URL of a server or service. Each
endpoint is the location from which APIs can access the resources they need to carry out their function.

APIs typically allow access to many different resources on a server. These different resources can be speci�ed by using
the correct endpoint. In their requests, clients specify an endpoint as a URL. This URL tells the server, “The resource I
want is at this location.” The process is similar to how you access web pages in a browser. Web browsers load web pages
by sending a URL to a web server, and the server responds with the requested page. Similarly, the client needs the right
endpoint URL to request a particular resource from an API.

36 / 70

Endpoint vs API
It’s important to note that endpoints and APIs are different. An endpoint is a component of an API, while an API is a set
of rules that allow two applications to share resources. Endpoints are the locations of the resources, and the API uses
endpoint URLs to retrieve the requested resources.

Why are API endpoints important?
Without properly structured and functioning endpoints, an API will be confusing at best and broken at worst. As you
make more data available through your API, it’s vital to ensure that each endpoint provides valuable resources for
clients.

37 / 70

Examples of API endpoints

Twitter
The Twitter API exposes data about tweets, direct messages, users, and more. Let’s say you want to retrieve the content
of a speci�c tweet. To do this, you can use the tweet lookup endpoint, which has the URL https://api.twitter.com/2/
tweets/{id} (where {id} is the unique identi�er of the tweet). Now, say you want your website to stream public tweets in
real-time so your visitors stay informed on a speci�c topic. You can use Twitter’s �ltered stream endpoint, whose URL is
https://api.twitter.com/2/tweets/search/stream.

38 / 70

https://developer.twitter.com/en/docs/twitter-api
https://developer.twitter.com/en/docs/twitter-api
https://api.twitter.com/2/tweets/%7Bid%7D
https://api.twitter.com/2/tweets/%7Bid%7D
https://api.twitter.com/2/tweets/%7Bid%7D
https://api.twitter.com/2/tweets/%7Bid%7D
https://api.twitter.com/2/tweets/search/stream
https://api.twitter.com/2/tweets/search/stream

Examples of API endpoints (continue)

Spotify
Spotify’s API gives developers access to song, artist, playlist, and user data. For example, if you want to get a speci�c
album, you can access any album in the Spotify catalog with the endpoint https://api.spotify.com/v1/albums/{id}
(where {id} is the album’s unique identi�er). Or, say you want to send a request that makes a user follow a playlist. In
this case, send a PUT request with the endpoint https://api.spotify.com/v1/playlists/{playlist_id}/followers (where
{playlist_id} is the unique identi�er of the playlist).

39 / 70

https://developer.spotify.com/documentation/web-api/
https://developer.spotify.com/documentation/web-api/
https://api.spotify.com/v1/albums/%7Bid%7D
https://api.spotify.com/v1/albums/%7Bid%7D
https://api.spotify.com/v1/playlists/%7Bplaylist_id%7D/followers
https://api.spotify.com/v1/playlists/%7Bplaylist_id%7D/followers

API Standards

REST API design best practices

Use JSON as the format for sending and receiving data
In the past, accepting and responding to API requests were done mostly in XML and even HyperText Markup Language
(HTML). But these days, JSON has largely become the de-facto format for sending and receiving API data. This is
because, with XML, for example, it's often a bit of a hassle to decode and encode data –- so XML isn’t widely supported
by frameworks anymore.

41 / 70

REST API design best practices (continue)

Use nouns instead of verbs in endpoints
When you're designing a REST API, you should not use verbs in the endpoint paths. The endpoints should use nouns,
signifying what each of them does.

This is because HTTP methods such as GET, POST, PUT, PATCH, and DELETE are already in verb form for performing basic
Create, Read, Update, Delete (CRUD) operations. The HTTP

42 / 70

REST API design best practices (continue)

Name collections with plural nouns
You can think of the data of your API as a collection of different resources from your consumers.

If you have an endpoint like https://mysite.com/post/123, it might be okay for deleting a post with a DELETE request or
updating a post with PUT or PATCH request, but it doesn’t tell the user that there could be some other posts in the
collection. This is why your collections should use plural nouns.

So, instead of https://mysite.com/post/123, it should be https://mysite.com/posts/123.

43 / 70

https://mysite.com/post/123
https://mysite.com/post/123
https://mysite.com/post/123
https://mysite.com/post/123
https://mysite.com/posts/123
https://mysite.com/posts/123

REST API design best practices (continue)

Use status codes in error handling
You should always use regular HTTP status codes in responses to requests made to your API. This will help your users
to know what is going on – whether the request is successful, if it fails, or something else.

Common error HTTP status codes include:

• 400 Bad Request – This means that client-side input fails validation
• 401 Unauthorised – This means the user isn’t not authorised to access a resource. It usually returns when the user

isn’t authenticated
• 403 Forbidden – This means the user is authenticated, but it’s not allowed to access a resource
• 404 Not Found – This indicates that a resource is not found
• 500 Internal server error – This is a generic server error
• 502 Bad Gateway – This indicates an invalid response from an upstream server
• 503 Service Unavailable – This indicates that something unexpected happened on the server side (It can be

anything like server overload, some parts of the system failed, etc.)

44 / 70

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

REST API design best practices (continue)

Use nesting on endpoints to show relationships
Oftentimes, different endpoints can be interlinked, therefore you should nest them so that it is easier to understand
them.

For example, in the case of a multi-user blogging platform, different posts could be written by different authors, so an
endpoint such as https://mysite.com/posts/author would make a valid nesting in this case.

In the same vein, the posts might have their individual comments, so to retrieve the comments, an endpoint like
https://mysite.com/posts/postId/comments would make sense. You should avoid nesting that is more than 3 levels
deep as this can make the API less elegant and readable.

45 / 70

https://mysite.com/posts/author
https://mysite.com/posts/author
https://mysite.com/posts/postId/comments
https://mysite.com/posts/postId/comments

REST API design best practices (continue)

Use �ltering, sorting, and pagination to retrieve the data requested
Due to the size of databases these days retrieving data can be very slow. Filtering, sorting, and pagination are all
actions that can be performed on the collection of a REST API that can speed up requests. This lets it only retrieve, sort,
and arrange the necessary data into pages so the server doesn’t get too occupied with requests.

An example of a �ltered endpoint is the one below: https://mysite.com/posts?tags=javascript This endpoint will fetch
any post that has a tag of JavaScript.

46 / 70

https://mysite.com/posts?tags=javascript
https://mysite.com/posts?tags=javascript

REST API design best practices (continue)

Use SSL for security
Secure Sockets Layer (SSL) is crucial for security in REST API design. This security layer will make your API less
vulnerable to malicious attacks. The clear difference between the URL of a REST API that runs over SSL and the one
which does not is the “s” in HTTP: https://mysite.com/posts runs on SSL. http://mysite.com/posts does not run on SSL.

Other security measures:

• Making the communication between server and client private
• Consumers only get what they request

47 / 70

https://mysite.com/posts
https://mysite.com/posts
http://mysite.com/posts
http://mysite.com/posts

REST API design best practices (continue)

Clear Versioning
REST APIs should have different versions, so you don’t force clients (users) to migrate to new versions. This might even
break the application if you're not careful.

Cache data
We can add caching to return data from the local memory cache instead of querying the database to get the data every
time we want to retrieve some data that users request. The good thing about caching is that users can get data faster.
However, the data that users get may be outdated. This may also lead to issues when debugging in production
environments when something goes wrong as we keep seeing old data.

If you are using caching, you should also include Cache-Control information in your headers. This will help users
effectively use your caching system..

48 / 70

REST API design best practices (continue)

Accurate API documentation
When you make a REST API, you need to help clients (consumers) learn and �gure out how to use it correctly. The best
way to do this is by providing good documentation for the API.

The documentation should contain:

• Relevant endpoints of the API
• Example requests of the endpoints
• Implementation in several programming languages
• Messages listed for different errors with their status codes

One of the most common tools you can use for API documentation is Swagger. You can also use Postman, one of the
most common API testing tools in software development, to document your APIs.

49 / 70

What is OpenAPI?
OpenAPI Speci�cation (formerly Swagger Speci�cation) is an API description format for REST APIs.

An OpenAPI �le includes:

• Available endpoints (/users) and operations on each endpoint (GET /users, POST /users)
• Operation parameters input and output for each operation
• Authentication methods
• Contact information, license, terms of use and other information

API speci�cations can be written in YAML Ain't Markup Language (YAML) or JSON, the format is easy to learn and
readable to both humans and machines.

50 / 70

https://www.openapis.org/
https://www.openapis.org/

What is Swagger?
Swagger is a set of open-source tools built around the OpenAPI Speci�cation that can help you design, build, document
and consume REST APIs.

Swagger tools include:

• Swagger Editor – browser-based editor where you can write OpenAPI de�nitions
• Swagger UI – renders OpenAPI de�nitions as interactive documentation
• Swagger Codegen – generates server stubs and client libraries from an OpenAPI de�nition
• Swagger Editor Next (beta) – browser-based editor where you can write and review OpenAPI and AsyncAPI
• Swagger Core – Java-related libraries for creating, consuming, and working with OpenAPI de�nitions
• Swagger Parser – standalone library for parsing OpenAPI de�nitions
• Swagger APIDom – provides a single, unifying structure for describing APIs across various description languages

and serialization formats

51 / 70

https://swagger.io/
https://swagger.io/

Interacting with APIs

De�nition
One can interact with APIs through several different avenues, with these interactions ranging from just using existing
APIs to building and testing your own. These avenues include using packages or libraries in your favourite programming
languages or purpose built software programs from third parties that are also known as API management tools. The
choice between using a free package/library or custom is not always straightforward.

Using free packages/libraries will have a low bar of entry with regards to money needed for startup but a higher bar of
entry with regards to the skills required to use it. API management tools will normally have an easy to understand UI
and good long term software maintenance but in most cases will ask some sort of fee to use.

53 / 70

Examples of API management tools

Mulesoft
Mulesoft's Anypoint Platform can be used to quickly design, test, and publish API products. Manage APIs, monitor and
analyse usage, control access, and protect sensitive data with security policies. While Anypoint API Community Manager,
provides self-service API documentation, forums, support, and personalised resources developers need to be
successful.

54 / 70

https://www.mulesoft.com/platform/enterprise-integration
https://www.mulesoft.com/platform/enterprise-integration

Examples of API management tools (continue)

IBM API Connect
IBM API Connect lets you expertly secure and manage your entire API ecosystem across multiple clouds —- including
boosting socialisation and monetisation efforts. IBM API Connect is a complete, intuitive and scalable API platform that
lets you create, expose, manage and monetise APIs across clouds.

55 / 70

https://www.ibm.com/ie-en/products/api-connect#:~:text=IBM%C2%AE%20API%20Connect%C2%AE,on%20premises%20and%20across%20clouds
https://www.ibm.com/ie-en/products/api-connect#:~:text=IBM%C2%AE%20API%20Connect%C2%AE,on%20premises%20and%20across%20clouds

Examples of API management tools (continue)

Axway
The Axway API Management Platform provides a comprehensive platform for managing, delivering, and securing APIs. It
provides integration, acceleration, governance, and security for Web API and SOA-based systems. Axway offers the full
lifecycle API management for the next generation, as well as automating the discovery, reuse, and governance of all
your APIs across multiple gateways, environments, and vendor solutions.

56 / 70

https://www.axway.com/en/products/amplify-api-management-platform
https://www.axway.com/en/products/amplify-api-management-platform

Examples of API management tools (continue)

Postman
Postman is a collaboration platform for API development. Postman's features simplify each step of building an API and
streamline collaboration so you can create better APIs. Quickly and easily send REST, SOAP, and GraphQL requests
directly within Postman. Automate manual tests and integrate them into your CI/CD pipeline to ensure that any code
changes won't break the API in production.

57 / 70

https://www.postman.com/
https://www.postman.com/

Why use Python?
• Ease of Comprehension
• It is easy to obtain, install and deploy
• Used in many industries
• Flexibility

Python

What is Python?
Python is a popular open source general-purpose programming language that can be used for a wide variety of
applications.

History
Python was created by Guido van Rossum, and �rst released on February 20, 1991. Python is maintained by the Python
Software Foundation, a non-pro�t membership organization and a community devoted to developing, improving,
expanding, and popularizing the Python language and its environment.

58 / 70

https://www.python.org/psf-landing/
https://www.python.org/psf-landing/
https://www.python.org/psf-landing/
https://www.python.org/psf-landing/

Consuming and building APIs using Python

Consuming
To write code that interacts with REST APIs, most Python developers turn to module called requests to send HTTP
requests. This library abstracts away the complexities of making HTTP requests.

Building
You can create APIs using different frameworks -- Python frameworks automate the implementation of several tasks
and give developers a structure for application development.

Popular API frameworks
• Flask Restful
• Eve
• Django REST
• Falcon
• FastAPI

59 / 70

FastAPI

More about FastAPI
FastAPI is one of the most ef�cient and high-performance Python API frameworks. It has a compact coding structure
that claims to allow code to be developed 200% to 300% faster than with other API development frameworks.

Uses of FastAPI
The tool is primarily used to build asynchronous web applications, as it is founded on Asynchronous JavaScript and
XML. It also features a Swagger user interface to call and test APIs from a browser.

Why use FastAPI
There are many reasons to use the FastAPI framework for API development but some of the mains ones are listed
below:

• Supports an intuitive editor and VSCode/PyCharm
• Integrated security and authentication and dependency injection system
• Fully compatible with Starlette and Pydantic

60 / 70

APIs using VSCode

What is VSCode?
Visual Studio Code is a free, lightweight but powerful source code editor that runs on your desktop and on the web and
is available for Windows, macOS, Linux, and Raspberry Pi OS. It comes with built-in support for JavaScript, TypeScript,
and Node.js and has a rich ecosystem of extensions for other programming languages (such as C++, C#, Java, Python,
PHP, and Go), runtimes (such as .NET and Unity), environments (such as Docker and Kubernetes), and clouds (such as
Amazon Web Services, Microsoft Azure, and Google Cloud Platform).

61 / 70

What can it do?

• Send HTTP Requests directly from VS Code
• GraphQL support
• cURL commands support
• Multiple requests per �le
• Different authentication protocols support
• Environments and variables support
• Generate code snippets for requests
• Cookies memory

VSCode to interact with APIs
VSCode has several different extensions that can be installed that make it easy for developers test APIs. The two most
popular extensions are:

REST Client
REST Client allows you to send HTTP request and view the response in Visual Studio Code directly.

62 / 70

Main features

• UI resembling Postman
• Collections and Environment variables
• GraphQL support
• Scriptless API Testing
• Git sync
• Import from Postman, Insomnia, etc.

VSCode to interact with APIs (continue)

Thunder Client
Thunder Client is a lightweight Rest API Client Extension for Visual Studio Code, and-crafted by Ranga Vadhineni with
simple and clean design

63 / 70

Example: Thunder Client API

Step 1
Download VSCode: https://code.visualstudio.com/

Step 2
Download Thunder Client: To download Thunder Client, you can �nd it on VS Code marketplace. Just search for
"Thunder Client" when you're prompted and then install it.

64 / 70

https://code.visualstudio.com/
https://code.visualstudio.com/

Example: Thunder Client API (continue)

Step 3
Launch Thunder Client: Click on the new icon that's been added in VS Code to launch Thunder Client.

65 / 70

Example: Thunder Client API (continue)

Step 4
Make a new request: Click on the new request button.

66 / 70

Example: Thunder Client API (continue)

Step 5
Select the correct verb: Depending on the type of Request, Thunder Client offers a list of HTTP VERBS for requests such
as GET, POST, PUT, DELETE, and PATCH.

67 / 70

Example: Thunder Client API (continue)

Step 6
Conduct a request and get a response: Using the The Bored API �nd something to do using the https://
www.boredapi.com/api/activity/ call.

68 / 70

https://www.boredapi.com/api/activity/
https://www.boredapi.com/api/activity/
https://www.boredapi.com/api/activity/
https://www.boredapi.com/api/activity/

Example: Thunder Client API (continue)

Step 7
Add parameters: Add a parameter to only show activity type = recreational in the response.

69 / 70

Make an API call youself

Question 1
Find something to do using the free The Bored API using VSCode and Thunder Client.

Question 2
Limit your call using parameters to only show results with key = 1000000.

HINTS:
Thunder Client: https://www.freecodecamp.org/news/thunder-client-for-vscode/

The Bored API: https://www.boredapi.com/

70 / 70

https://www.freecodecamp.org/news/thunder-client-for-vscode/
https://www.freecodecamp.org/news/thunder-client-for-vscode/
https://www.boredapi.com/
https://www.boredapi.com/

Introduction to Docker

A great quote:

A best practice is an optional investment in your product or
system that should yield better outcomes in the future. Best
practices enhance security, prevent con�icts, improve
serviceability, or increase longevity. Best practices often
need advocates because justifying the immediate cost can
be dif�cult.

In a nutshell, Docker is a container engine that allows developers like yourselves to build production-grade
applications in isolated, stable and easily portable environments.

What is Docker?

Again, in English: Docker allows you build an
application that will run anywhere and will not

interfere with any other program running on your machine (anywhere there is Docker, which is everywhere).

2 / 32

What is Docker?
What problems does Docker help solve?

• Well, it works on my machine...
• The database has gone down. Did the server get rebooted recently?
• The API is not working. Did a new version of R get installed?

The key concept behind Docker is containerisation: a fancy term for being able to write code in an independent,
isolated environment where you can have explicit control of the versions of packages and other underlying software
supporting your project.

What this means in practise is that you can use different versions of python, R, java, GDAL, postman, etc depending on
what your project requires. Not only can you choose from a variety of package versions, you can use them without fear
that they're going to interfere with each other.

3 / 32

Why Docker?
This �gure below illustrates the web of dependencies created by running multiple applications natively:

Docker cleans up this web by running each application inside a container:

4 / 32

You have likely already come in to contact with containers in the form
of java jars , python .virtualenvs , or {renv} in R. All of these
solutions allow you to control your package versions to make your
projects more sustainable and portable. However, in this day and age,
you are likely to be using many different languages in your projects,
some of which will depend on system packages.

Docker is generalised version of the language-speci�c tools mentioned
above. What Docker aims to do is to create a container that goes
around a whole operating system and everything installed on it. This
means that you can specify even the OS that you want to use for a
project, and then install the right dependencies on top of that.

Docker was inspired by the adoption of a standard shipping container
by the shipping industry. Creating standard dimensions for carrying
goods increased the ef�ciency of freight and the shipping industry took
off. For more details see this keynote from the founder of Docker.

What is Docker?

5 / 32

https://youtu.be/3N3n9FzebAA?si=TIhdkztEoAv9gNwM
https://youtu.be/3N3n9FzebAA?si=TIhdkztEoAv9gNwM

Why Docker?
Docker was originally intended as a tool to be able to easily transfer applications into other machines as the demand
for their use grows. This is really in the realm of hardcore software engineering and DevOps. So you might be thinking:
"Is this not overkill? How is this necessary for me as a data scientist?"

While the applications and dashboards you are building may never be required to serve as many users as say Twitter or
Facebook, you will nonetheless be required to be writing production code. This means that whatever you build must
have an emphasis on stability and security, so that your users can consistently access a high-quality service. This is
how Docker can help you to do this:

• Stability: Running an app inside a docker container isolates that application from other activities or processes
happening on your server. This mean that you can upgrade, downgrade, delete or whatever else your system
packages with no fear of affecting the running app and be more con�dent that your application is offering
uninterrupted service. It also has the added bonus of restarting automatically over system reboots, meaning you
don't have to manually restart it.

• Security: Docker containers are isolated from the server they sit on. Containerising an app that is exposed to the
public or even other computers in a network is a good way to insure that in an event of your app becoming
compromised, the rest of your server is less at risk than if it was running natively (that is, directly on the server).

6 / 32

Technical difference - JARGON WARNING:

• A Docker container is a clever way of isolating operating system
processes. Although many different containers could be running on
a system, at the end all their processes are running on the same
operating system and in the same kernel.

• Virtual Machine is just what it claims it is. It is a virtual simulation
of a physical computer, which means it has its own specially
partitioned and ringfenced system resources in addition to
software.

The key difference is that Docker containers don’t use any hardware virtualization. This makes them much more
ef�cient that a Virtual Machine.

A quick note on Virtual Machines
Many of you will have heard of Virtual Machines, and you might be thinking that Docker is a Virtual Machine. Indeed,
they can serve the same function as a Docker container. However there are some key differences that you should be
aware of.

7 / 32

Installing Docker
The online Docker user manuals, called Docker Docs, is incredibly comprehensive repository for all things Docker
related, and it should be your �rst point of reference when you run into trouble!

You can �nd a guide to installing Docker here. Follow this now!

Once you're done, check the results of docker ��version to see if it works.

With con�rmation that Docker is successfully installed, it's time to spin up a Docker for the �rst time.

docker run hello�world

What happens?

8 / 32

https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

The Docker group
You should see that your docker run hello�world attempt will fail with this error message:

docker: permission denied while trying to connect to the Docker daemon socket

While this is likely the �rst time you will have run into this error, it most certainly will not be the last!

Docker controls the ability to interact with images, containers and anything else Docker related via the docker group. If
you aren't assigned to this group, whatever docker command you run you will be met with the same fate. Use id to
check what groups have been assigned to you, and then use sudo usermod �aG docker $USER

• usermod is the command to (surprisingly) modify a user's characteristics
• �aG is the shorthand for add Group
• docker is the name of the group
• $USER is the system variable that identi�es the current user in the shell

Once you have done this, relog into your machine and check that everything has worked by repeating id . If you don't
relog you won't see any changes, as your user information is only re-evaluated once a new shell session is started.

9 / 32

First Docker
Now that annoying admin is out of the way, we can actually get to running our �rst docker. What happens?

docker run hello�world

10 / 32

Understanding Docker
What has just happened here is not particularly clear, and raises more questions than answers. What makes this any
different from a plain old echo ? What is an image? What is Docker Hub? Let's try and clear this up by getting to grips
with some concepts that are core to the way Docker works.

To recap: Docker allows you to create an isolated environment for an application (in this case, think API!). The easiest
way to think about this is as a second computer that has completely different packages installed it, that can be
upgraded or deleted entirely independently from your machine. But how is this environment de�ned? What packages
are installed in it? What operating system is it running?

All of these questions are de�ned in a Docker image. You can think of this as a list of speci�cations that outline the
software setup of a computer. Note that it does not ever mention anything about hardware allocation, since this is not
a Virtual Machine!

Now then: a Docker container is the actual running isolated environment. Every Docker container is based on a Docker
image. You can have multiple Docker containers running from the same image, but you cannot have one Docker
container based on more than one image.

Fortunately, you don't have to build an image from scratch. Docker Hub is an online repository for pre-made images
free for anyone to use!

11 / 32

https://hub.docker.com/
https://hub.docker.com/

Running our second Docker container
Let's try to put these concepts into practise. As referenced in the output of hello�world , we can run something a little
more ambitious. How about an ubuntu container? The command above �rst downloads an ubuntu image from Docker
Hub. You can �nd a description of the image here. This image is a minimal Ubuntu OS that is a great base for the start
of any application. Once the image is succesfully downloaded, a Docker container is immediately spun up based on the
Ubuntu image. Once the container is ready, Docker opens an interactive bash session for you(the �it option) within
that container. You should notice that you are now on what looks like a different machine, logged in as the root user!

docker run �it ubuntu bash

Try to move around and run some basic bash commands. You should see that it functions in exactly the same way as
the server that you set up yesterday! Some examples of things you can try:

• use ll and cd to move around the �le system
• add a new user with adduser
• install a package with apt install

Once you're done playing around, exit the container with CTRL+D.

12 / 32

https://hub.docker.com/_/ubuntu
https://hub.docker.com/_/ubuntu

Some basic Docker commands
Now that we've been playing around with Docker for a while, let's have a look at some tools to use to help you work
with Docker on your machine. Docker commands always start with docker , which is helpful.

Docker commands

• docker run {image_name} : this commands takes an image and spins up a container based on that image!
• docker image ls : shows a list of available images downloaded or built on your machine. You can remove an image

using docker image rm .
• docker stop {container_name} : this spins down an active container
• docker ps : one of the most useful commands, it shows the list of currently running Docker containers on your

system. Adding the �a argument will also show all the containers that have been spun up since the last system
prune.

• docker system prune : this command cleans up your Docker. Make sure you adhere to it's warning messages!

Docker syntax is very friendly! You should notice that these commands are structured to align with the de�nitions of
bash commands with the same name. For example, as ls lists the contents of a directory, docker image ls lists all our
saved images. This makes working with Docker pretty easy to learn.

Extra credit question: why is the Ubuntu container that we just spun up show a STATUS of Exited ?

13 / 32

Building our own docker image
There is a vast array of Docker images available from Docker Hub for you to use. However, a prebuilt docker image will
never meet your needs forever. So we need to learn how to customise these images to be �t for whatever our purpose
happens to be.

A Docker image is created using a Dockerfile . In essence, this is a docker base layer combined with a small set of basic
commands that outlines a custom Docker image. Let's have a look at the basic building blocks of a Dockerfile .

• FROM : this speci�es the base image that the rest of the customisation will be built on. This can be as simple as
ubuntu .

• COPY : add additional pre written �les, scripts or data to the image as it is built.
• RUN : add supporting lines of code that will be run during the image build only
• CMD : commands/operations that should be run each time a container using this image starts up

Let's try out an example of how this might work. First, let's keep things organised: make a new folder in your home
directory called docker , and within that another dir called 01-basic .

14 / 32

Building our own Docker image

Outlining an image
Within your ~/docker/01-basic directory, use vim to create a new �le called Dockerfile , and add these lines:

FROM ubuntu:latest
CMD echo 'Docker is nuts!'

That's it. What are these lines doing?

• FROM ubuntu:latest : this tells the Docker engine that this image will be based on the latest ubuntu image layer
that is available on Docker Hub.

• CMD echo 'Docker is nuts!' : each time this image is called into action, the command echo 'Docker is nuts!'
should be run.

Build the image, making sure that you are in the ~/docker/01-basic directory: Note that the . is refers to the current
working directory!

docker build .

15 / 32

Building our own Docker image

Outlining an image
If all goes well, you should see some output from docker which is downloading image layers and compiling it all
together. You can verify that your image has been built using docker image ls . You should see an unnamed and
untagged image! You can give your image a name using the �t (tag) argument in the docker build function:

docker build �t 01-basic .

You can see now that our image has a name and a tag (and is now much easier to manage!)

What's left to do but use our image to spin up a container? Before you do, think about what you expect to happen.

P.S. - don't overthink it!

docker run 01-basic

16 / 32

Building our own Docker image

Adding a RUN statement
How about some customisation to try out some of the other basic components of a Docker�le. Edit your Docker�le so
that it looks like this:

FROM ubuntu:latest
RUN adduser james
CMD id james

What is this image specifying? Remember that there is an important difference between RUN and CMD , and that
commands in Dockerfile are evaluated one after the other.

Rebuild the image and run it using the commands from earlier. What happens? Is it what you expected?

docker build �t 01-basic .
docker run 01-basic

17 / 32

Building our own Docker image

Adding a COPY statement
Now let's add in some external data that we create. Make a new �le with some information in it (whatever you want to
say - just feel it). Call it copy_test.

Now add a line to your Docker�le so that it looks like this:

FROM ubuntu:latest
COPY copy_test .
RUN adduser james
CMD id james �� cat copy_test

Again, rebuild your image and then run it. You should see that exactly what you entered into copy_test displayed. This
is how you can get external information into your image!

18 / 32

Building our own Docker image

Adding a COPY statement
Usually, you'd replace copy_test with a script of some kind. This would be a dashboard or an API that you have already
developed! Modify copy_test so that it turns into an executable �le that echoes a string - change it up a little bit so
that you can tell the difference in your next output.

�� /bin/bash
echo 'James is my [least] favourite Uncle'

Test that your �le is working properly by executing it in the terminal �rst. Add execute permissions �rst:

chmod 700 copy_test
./copy_test

You should see your expect string echoed in the terminal! If not, check your �le permissions to make sure that you can
actually execute copy_test .

19 / 32

Building our own Docker image

Adding a COPY statement
Now that you are con�dent that your script will execute, return to editing Dockerfile and update your CMD command
to execute copy_test rather than just echoing the contents:

FROM ubuntu:latest
COPY copy_test .
RUN adduser james
CMD id james �� ./copy_test

For one last time:

docker build �t 01-basic .
docker run 01-basic

Even though the output is only slightly different to what we've seen before, the underlying mechanics are vastly
different and have HUGE implications for how we can use Docker! As long as you have the right dependencies installed,
you can run any script within a container that you can on your machine.

20 / 32

Practical Docker
Now that we are familiar with how to work with Docker, it's time to head for the deep end and put it into practice. We're
going to do this by setting up a MariaDB database that runs in a container. Let's recap what the bene�ts of running a db
inside a container rather than natively are:

• Security: since a container is separate from the rest of your server, there is an extra layer of security between users
of the database and the rest of the server

• Stability: you never have to worry about the database breaking because of inadvertent changes to dependencies.
The container will also spring right back up on a server reboot so it doesn't need to be manually restarted either!

• Portability and reproducibility: if you need to transfer your db onto another server, you can do so with minimal
worries about setup. Just install Docker on the new machine, and the container will run as normal.

21 / 32

The MariaDB Image
There is a lot to be thankful for in life. One of them is the extent to which friendly programmers and developers make
easy-to-use and high-quality software available to us for free.

Case in point: MariaDB. High-quality documentation is available to assist us in installing and running MariaDB in a
container. The Docker Hub documentation here and the MariaDB docs here give us information on a prebuilt MariaDB
image!

Looking through the Docker Hub documentation, the most minimal con�guration to run is the following:

docker run ��detach ��name mariadb ��env MARIADB_ROOT_PASSWORD=password ��volume ./db_data:/var/lib/mysql mariadb:latest

docker run should be familiar to you by now, but there are some additional parameters and arguments here that we
haven't seen before. In order to understand what this is doing, we need to cover some additional functionality that
Docker provides.

22 / 32

https://mariadb.com/
https://mariadb.com/
https://hub.docker.com/_/mariadb
https://hub.docker.com/_/mariadb
https://mariadb.com/kb/en/installing-and-using-mariadb-via-docker/
https://mariadb.com/kb/en/installing-and-using-mariadb-via-docker/

Advanced Docker parameters

��detach
The ��detach parameter takes no argument. It tells Docker to spin up the container in detached mode, which
essentially means that the Docker will run in the background. Try it out with our �rst image 01-basic .

docker run ��detach 01-basic

The only thing you should see is a random string of digits and letters, which is actually the container ID that is assigned
to that container. We don't see any of the output that we saw previously, because the container has been run in the
background without you having to see any of the output or messages created. This is what you would use in production.

23 / 32

Advanced Docker parameters

��name
This is a fairly simple one. The ��name parameter takes one argument, which is the name that you want for your
container! This overwrites the random name that docker will assign to a container when you spin it up. Run the
following:

docker run ��name my_first_docker 01-basic

Now, run docker ps �a and compare the names of the containers that you have spun up to check that this works. The
��name parameter will become important in keeping track of your containers as your use of Docker gets more complex!

24 / 32

Advanced Docker parameters

��env
This is a very useful Docker function that allows you to pass custom variables into the CMD command of the Docker�le.
Let's have a look at how this works. We are going to do this by once again editing our good old 01-basic image to
include an environment variable called HELLO_NAME , which allows us to customise the name that the container spits
out.

FROM ubuntu:latest
COPY copy_test .
RUN adduser james
ENV HELLO_NAME=james
CMD id james �� ./copy_test �� echo "Hello, $HELLO_NAME"

Rebuild the image, run the docker as usual, then add the the additional ��env parameter:

docker build �t 01-basic .
docker run 01-basic
docker run ��env HELLO_NAME=hanjo 01-basic

25 / 32

Advanced Docker parameters

��volume
One of the most powerful functions of Docker is the ability to share �les between a container and the native �le
system. This is called mounting a volume. The ��volume parameter speci�es a common directory between the
container and the server and mirrors the contents. This serves two functions:

• Persistency: as long as the mount is consistent, a container will be able to pull from a stable source of data
regardless of how many times it has started and stopped

• Extraction: mounting a volume to the container allows you to pull out anything generated by the container's
processes

Let's have a look at how this works.

26 / 32

Advanced Docker parameters

��volume
First, let's edit our familiar friend 01-basic to output something.

FROM ubuntu:latest
COPY copy_test .
RUN adduser james �� mkdir output
ENV HELLO_NAME=james
CMD echo "Hello, $HELLO_NAME" �� ./copy_test > /output/output_file

Rebuild the image:

docker build �t 01-basic .
docker run 01-basic

Now, let's spin up the container remembering to include the ��volume parameter

mkdir container_output
docker run ��volume ./container_output:/output 01-basic

27 / 32

Return to MariaDB
Now we should be well-placed to fully understand the docker run command that is used to spin up our MariaDB
container.

docker run ��detach ��name mariadb ��env MARIADB_ROOT_PASSWORD=password ��volume ./db_data:/var/lib/mysql mariadb:latest

What's left to do but run it?

28 / 32

Using MariaDB
We now have a running MariaDB instance - but how do we start working with it? The docker exec command will help
us.

docker exec �it mariadb bash

This opens an interactive terminal for us to use to administrate our db.

mariadb �u root �p

We are now in the MariaDB monitor and can go ahead with the usual database operations that we are familiar with!

CREATE DATABASE warehouse;
SHOW TABLES;
CREATE TABLE test(number FLOAT);
INSERT INTO test SELECT RAND();

29 / 32

A sneak peak into docker compose
Our docker run command is not looking pretty hefty. You certainly won't be remembering that without a lot of effort. In
general, constructing these commands becomes exponentially more complicated especially when you want to spin up
multiple containers that are all talking to each other!

Fortunately, there is a solution! It is called docker compose , and it allows you to replace a long, cumbersome docker
run command with a concise yaml �le that outlines all the different parameters that are required to spin up our
container. To demonstrate this, create a new directory in ~/docker/ called 02-maridb and create a �le called docker�
compose.yaml in it with the following contents:

services:
 db:
 image: mariadb
 container_name: mariadb
 restart: always
 environment:
 MARIADB_ROOT_PASSWORD� password
 ports:
 - "3601�3601"
 volumes:
 - ./db_data:/var/lib/mysql

30 / 32

A sneak peak into docker compose
Remember to also create a directory called db_data to use as a mapped volume!

We can now easily spin up a container using docker compose up ��detach , which is much more friendly. Hanjo will
showcase some more advanced uses of docker compose in the next sessions.

31 / 32

32 / 32

FastAPI and Docker

��� import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one�� and preferably only one ��obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than �right� now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea �� let's do more of those!

2 / 38

• Hello World
• Hello World in Docker
• Making DB calls while in Docker

Learning outcomes
Now and then, the bright and shiny objects that we stumble across can turn out to be very useful.

We want to take you on a high-level tour of FastAPI. Getting you started with the basics! The rest of the journey is up to
you:

3 / 38

Building basic
API �

SETUP
Another important term to know is operation, which is used in reference to any of the HTTP request methods:

• POST
• GET
• PUT
• DELETE
• OPTIONS
• HEAD
• PATCH
• TRACE

Create an environment

mkdir ~/.venv
python3 �m venv myapi
source ~/venv/myapi/bin/activate

5 / 38

Create a coherent folder for API
Its always good practice to organise your folders, distinguishing between production and development.

• My Suggestion would be to have the following folder structure:

cd ~
mkdir �p {docker/fastapi,production,projects,packages/{r,python}}

6 / 38

Create a coherent folder for API
Its always good practice to organise your folders, distinguishing between production and development.

• My Suggestion would be to have the following folder structure:

(base) hanjo@optimus:~$ tree
.
├── docker
│ └── fastapi
├── packages
│ ├── python
│ └── r
├── production
└── projects

cd packages/python

7 / 38

Ready for the basics!

8 / 38

requirements.txt

fastapi
uvicorn[standard]
pydantic
typing

Install Linux dependencies:

sudo apt update
sudo apt install python3-pip
sudo apt install uvicorn
sudo apt install net�tools
sudo apt install httpie

In the same folder execute the requirements �le, making
sure you are in the right environment!

pip3 install �r requirements.txt

Requirements
On to creating your �rst using API fastapi . Create a �le in VScode under the ~/docker/fastapi/ folder. Create the
requirements.txt �le: requirements.txt .

9 / 38

A basic FastAPI �le looks like this:

from fastapi import FastAPI
import uvicorn

app = FastAPI()

@app.get("/hi")
def greet():

return {"message": "Hello World"}

• app is the top-level FastAPI object that represents the
whole web application.

• @app.get("/hi") is a path decorator. It tells FastAPI
the following:

◦ A request for the URL "/hi" on this server should
be directed to the following function.

◦ This decorator applies only to the HTTP GET verb.
You can also respond to a /hi URL sent with the
other HTTP verbs (PUT, POST, etc.), each with a
separate function.

• def greet() is a path function

main.py
To start your �rst using API fastapi , create a �le in VScode under the ~/docker/fastapi/app folder. Call this �le
main.py

10 / 38

main.py
To start your �rst using API fastapi , create a �le in VScode under the ~/docker/fastapi/app folder. Call this �le
main.py

A basic FastAPI �le looks like this:

from fastapi import FastAPI
import uvicorn

app = FastAPI()

@app.get("/hi")
def greet():

return {"message": "Hello World"}

Run the First API App With Uvicorn ��������:

uvicorn main:app ��port 8000 ��host 0.0.0.0 ��reload

11 / 38

 ��Authenticate��
 ��Get World Cup Football Data��

app = FastAPI(
 title = "WorldCupApi",
 description = description,
 summary = "Messi's favorite app. Nuff said.",
 version = "0.0.1",
 terms_of_service = "http:��example.com/terms/",
 contact = {

"name": "Ronaldinio",
"url": "http:��football.com",
"email": "football@worldcup.com",

 },
 license_info={

"name": "Apache 2.0",
"url": "https:�����.apache.org/licenses/LICENSE-2.0.html",

 },
 openapi_tags=tags_metadata
)

@app.get("/hi", tags=["basics"])
def greet():

return {"message": "Hello World"}

main.py
What can we put in FastAPI() ? https://fastapi.tiangolo.com/reference/fastapi/

description = """
Football API helps you get football data. ���

�� Users

You will be able to:

"""

tags_metadata = [
 {

"name": "basics",
"description": "Basics operations.",

 },
 {

"name": "data",
"description": "Data is legit.",
"externalDocs": {

"description": "Items external docs",
"url": "https:��fastapi.tiangolo.com/",

 },
 },
]

12 / 38

https://fastapi.tiangolo.com/reference/fastapi/
https://fastapi.tiangolo.com/reference/fastapi/

• netstat �nltp

• Endpoint

◦ http:��{IP}�8000

• Docs

◦ http:��{IP}�8000/docs
◦ http:��{IP}�8000/redoc

Its also good to understand terminology around requests,
especially curl commands! In our case using http from
httpie :

http localhost:8000/hi
http �b localhost:8000/hi
http �v localhost:8000/hi

HTTP/1.1 200 OK
content�length: 25
content�type: application/json
date: Sun, 10 Dec 2023 17�54�08 GMT
server: uvicorn

{
"message": "Hello World"
}

Interacting with the endpoint

13 / 38

http �v localhost:8000/hi

GET /hi HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Connection: keep�alive
Host: localhost:8000
User-Agent: HTTPie/2.6.0

HTTP/1.1 200 OK
content�length: 25
content�type: application/json
date: Sun, 10 Dec 2023 18�04�55 GMT
server: uvicorn

{
"message": "Hello World"
}

This request contains the following:

• The verb (GET) and path (/hi) • Any query parameters
(text after any ? in this case, none) • Other HTTP headers •
No request body content

Interacting with the endpoint
Its also good to understand terminology around requests, especially curl commands! In our case using http from
httpie :

14 / 38

Exercise
1) Write an app that returns your name using path (or endpoint) name :

• The returned object has to say "Hello, my name is {name}"

2) Pick an IP from this list and tell me whose machine is whose. Do this using commandline and ThunderClient

15 / 38

20�00

How to add parameters
All the arguments that you need can be declared and provided directly inside the path function , using the de�nitions
in the preceding list(Path, Query, etc.), and by functions that you write. This uses a technique called dependency
injection and is one of the major advantages of FastAPI above other frameworks

Lets add parameters in four different ways:

• In the URL path
• As a query parameter in the URL using ?
• In the HTTP body
• As an HTTP header

◦ My preferred option for authentication

16 / 38

from fastapi import FastAPI
import uvicorn

app = FastAPI()

@app.get("/hi/{who}")
def greet(who):
 msg = f"Hello {who}!"

return {"message": msg}

ubuntu@ip-172-31-11-91�~/docker/fastapi$ http localhost:8000/hi/Mom

HTTP/1.1 200 OK
content�length: 24
content�type: application/json
date: Sun, 10 Dec 2023 19�11�24 GMT
server: uvicorn

{
"message": "Hello Mom!"
}

How to add parameters: URL Path
Once you save this change from your editor, Uvicorn should restart! Remember we set it up to assist with autorelad
using ��reload .

Adding that {who} in the URL (after @app.get) tells FastAPI to expect a variable named who at that position in the URL.
FastAPI then assigns it to the who argument in the following greet() function.

This shows coordination between the path decorator and the path function.

17 / 38

from fastapi import FastAPI
import uvicorn

app = FastAPI()

@app.get("/hi")
def greet(who):
 msg = f"Hello {who}!"

return {"message": msg}

Note the double �� in the second example:

http �v localhost:8000/hi?who=Mom
http �v localhost:8000/hi who��Mom

How to add parameters: Query Parameters
Query parameters are the name=value strings after the ? in a URL, separated by & characters. This is a common way to
specify and build basic APIs.

The endpoint function is de�ned as greet(who) again, but {who} isn’t in the URL on the previous decorator line this
time, so FastAPI now assumes that who is a query parameter!

18 / 38

from fastapi import FastAPI, Body
import uvicorn

app = FastAPI()

@app.post("/hi")
def greet(who:str = Body(embed=True)):
 msg = f"Hello {who}!"

return {"message": msg}

Note the single =

http �v localhost:8000/hi who=Mom

POST /hi HTTP/1.1
Accept: application/json, */*;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep�alive
Content-Length: 14
Content-Type: application/json
Host: localhost:8000
User-Agent: HTTPie/2.6.0

{
"who": "Mom"
}

HTTP/1.1 200 OK
content�length: 24

How to add parameters: Body
Note that GET is suppose to be idempotent - ask the same question, get the same answer. If we want to "send" data to
an endpoint, we use POST !

19 / 38

How to add parameters: HTTP Header
Probably my favourite way to include parameters (mostly because I work a lot with authentication).

from fastapi import FastAPI, Header
import uvicorn

app = FastAPI()

@app.get("/hi")
def greet(who:str = Header()):
 msg = f"Hello {who}!"

return {"message": msg}

HTTPie uses name:value to specify an HTTP header.

http �v localhost:8000/hi who:Mom

20 / 38

How to add parameters: HTTP Header
FastAPI converts HTTP header keys to lowercase, and converts a hyphen (-) to an underscore (_). So you could print the
value of the HTTP User-Agent header like this:

from fastapi import FastAPI, Header
import uvicorn

app = FastAPI()

@app.get("/agent")
def get_agent(user_agent:str = Header()):

return user_agent

• Get agent:

http �v localhost:8000/agent

21 / 38

Exercise
1) Write an app that returns your name and surname using endpoint fullname

• Use Headers and Query Parameters
• The returned object has to say "Hello {name} {suname}"

2) Write a function that returns the host address

Your amazing app should have three endpoints!

22 / 38

30�00

Dockerize
Now that you have an amazing app, lets put it into production! In the folder ~/docker/fastapi , create a Dockefile :

BUILD� docker build �t myapi .
DEV� docker run ��rm ��name myapi �p 8000�80 myapi

FROM python:3.9

WORKDIR /code

COPY ./requirements.txt /code/requirements.txt

RUN pip install ��no�cache�dir ��upgrade �r /code/requirements.txt

COPY ./app /code/app

EXPOSE 80

CMD ["uvicorn", "app.main:app", "��host", "0.0.0.0", "��port", "80"]

check: http:��{IP}�8000/ .

23 / 38

Homework: Football API
Disclaimer, we do not cover SSL certi�cations - without it, any BASIC auth like this is kind of useless

1) Using the request library in python make a request to get data from a csv.

• Authenticate using headers with the name and password you inserted
◦ ����� Combine headers and if statement in order to check for correct auth
◦ Use {name} {suname} (use your own)

• Return all data from ~/data/worldcup.csv
◦ For optimised performance, read in at the top of the app

2) Adjust your docker�le

24 / 38

45�00

Back to interactions with DB!

25 / 38

Lets create a user database
It is likely that we certain users to have certain levels of access. Especially if we interacting with APIs that are open to
the public.

The basic �rst step is to create a DB in MySQL:

CREATE TABLE api.keys AS(
user VARCHAR(100),

 apikey VARCHAR(32),
 api_loaded TIMESTAMP,
 PRIMARY KEY(apikey)
)

26 / 38

Upload some data.
• Load the following dataset

LOAD DATA LOCAL INFILE '/home/ubuntu/data/worldcup.csv'
INTO TABLE data.worldcup
FIELDS TERMINATED BY ','
IGNORE 1 LINES
;

• What is wrong with this if our MariaDB is in a container?

• Create the correct CREATE TABLE and then upload. Use head to get the correct column names.

27 / 38

20�00

Using dbutils example
Start off by creating two �les in the app/ folder called dev.py and .env . Most important, in the .env �le, add your
credentials that were used when setting up the MariaDB docker:

db_user = X
db_pass = X
db_host = X
db_port = X

Next install the dbutils.whl package using:

pip install dbutils.whl

28 / 38

Using dbutils example
The dev.py �le will be broken down into three distinct sections: (1) Imports, (2) Logger setup and (3) Main:

import logging
from decouple import config
from dbutils import Query
import pandas as pd

def setup_logger():
create logger

 logger = logging.getLogger('dbutils')
logger.setLevel(logging.DEBUG)

 logger.setLevel(logging.INFO)

create console handler and set level to debug
 ch = logging.StreamHandler()
 ch.setLevel(logging.DEBUG)

create formatter
 formatter = logging.Formatter('%(asctime)s [%(levelname)s] %(name)s: %(message)s')

add formatter to ch
 ch.setFormatter(formatter)

add ch to logger
 logger.addHandler(ch)

29 / 38

Using dbutils example
The �nal piece of the script contains our main function:

def main():
 setup_logger()

 api_db = Query(
 db_type = 'mysql',
 db_name = 'api',
 db_user = config('db_user'),
 db_pass = config('db_pass'),
 db_host = config('db_host'),
 db_port = config('db_port')
)

 print(api_db.sql_query(sql = "SELECT * FROM keys", limits = 5))

if ��name�� �� '��main��' and ��package�� is None:
 print(f"Running main file {��name��}")
 main()

30 / 38

Add keys for auth into DB
INSERT INTO api.keys (user, apikey)
VALUES ('hanjo', 'secret')

31 / 38

Move to Production in docker
What do we change when we move this con�guration to docker?

• Ensure we have the correct .env folder

◦ Integrated DNS allows us to use the name!

• Adjust Docker�le in order to install dbutils.whl

• Adjust Docker�le in order to install

32 / 38

Final Docker-compose
What do we change when we move this con�guration to docker?

version: "3.4"

RUN� docker�compose �p myapi up �d
TEST� siege �t1s 'http:��127.0.0.1�8000/'

services:
 api:
 restart: always
 image: myapi
 ports:
 - "8000�80"
 networks:
 - mariadb

networks:
 mariadb:
 external: true
 name: mariadb

33 / 38

Everyone's favourite part: documentation
https://fastapi.tiangolo.com/tutorial/metadata/

34 / 38

https://fastapi.tiangolo.com/tutorial/metadata/
https://fastapi.tiangolo.com/tutorial/metadata/

How do we scale?

35 / 38

How do we scale?

36 / 38

Scale your API using Gunicorn
You can use Gunicorn to manage Uvicorn and run multiple of these concurrent processes. That way, you get the best of
concurrency and parallelism.

pip3 install "uvicorn[standard]" gunicorn
sudo apt install siege

• RUN!

gunicorn \
main:app ��workers 4 ��worker�class \
uvicorn.workers.UvicornWorker ��bind 0.0.0.0�8000

• Siege!

siege -C
siege �t1s 'http:��127.0.0.1�8000/'

37 / 38

Dockerize
Adjust the Docker�le to use Gunicorn :

BUILD� docker build �t myapi .
DEV� docker run ��rm ��name myapi �p 8000�80 myapi

FROM python:3.9

WORKDIR /code

RUN apt update

COPY ./requirements.txt /code/requirements.txt

RUN pip install ��no�cache�dir ��upgrade �r /code/requirements.txt

RUN pip3 install "uvicorn[standard]" gunicorn

COPY ./app /code/app

EXPOSE 80

CMD [\
"gunicorn", "app.main:app", "��workers", "4", \
"��worker�class","uvicorn.workers.UvicornWorker", "��bind", "0.0.0.0�80" \

]
38 / 38

