
Learning Polars with Python
Section 1

1) About this Course
2) Software Requirements
3) Why Polars

4 / 94

About this Course

What this course aims to achieve
What the course aims to achieve:

On completion of the workshop, participants should be able to (1) interact with data using polars, (2) use
the tidy interface, and utilize the python dbutils package to load data from mysql.

• Very few organizations need machine learning engineers, but all of them need a data team that communicates
effectively and have the necessary skills to perform basic data tasks. Getting teams to understand the broader
problem each department faces solves 80% of the frictions encountered when delivering insight from data.

What the course does NOT aim to achieve:

It will NOT turn individuals with varying backgrounds, skills and motivations into fully-�edged Data
Scientists. This course does not cover statistical languages and the interplay between databases and
Python

• We wish to elevate people's knowledge and exposure to basic data science principles to help guide them on their
data journey.

6 / 94

You should:

• Basic wrangling in python using polars .
• Be able to query a database and do basic

aggregations.
• Understand how one can build python packages.

We also encourage the following behaviour throughout the
course:

• Learn from each other and share knowledge in groups.
• Ask questions during the course - the instructor has a

lot of knowledge that you should tap.

Key outcomes

7 / 94

Session 1 (08:30 to 10:30) ����������������� & �����:

• Course introduction.
• Install software for course.
• Linux basics review
• Learning about virtual environments.

Session 2 (11:00 to 13:00) ����������������� & �����:

• Quarto and VSCode

Session 3 (14:00 to 16:30) �����

• Basics of Polars ������

Session Breakdown: Day 1 - Linux Environment

8 / 94

Session 1 (08:30 to 10:30) �����:

• Selecting, �ltering interfaces
• Transformations

Session 2 (11:00 to 13:00) ����������������� & �����:

• Transformations
• Aggregations

Session 3 (14:00 to 16:30) �����

• Aggregations
• Joins

Session Breakdown: Day 2 - Deeper into polars

9 / 94

Session 1 (08:30 to 10:30) ` �����:

• Homework
• Optimizations

Session 2 (11:00 to 13:00) ����������������� & �����:

• Tidypolars

Session 3 (14:00 to 16:30) �����

• Tidypolars

Session Breakdown: Day 3 - Deeper into polars

10 / 94

Session 1 (08:30 to 10:30) ` �����:

• Mini project

Session 2 (11:00 to 13:00) ����������������� & �����:

• Presentations

Session 3 (14:00 to 16:30) �����

• Development in Python

Session Breakdown: Day 4 - Application

11 / 94

Session 1 (08:30 to 10:30) ` �����:

• Gorilla Methods and Classes

Session 2 (11:00 to 13:00) ����������������� & �����:

• Connection and installation

Session 3 (14:00 to 16:30) �����

• Basic querying

Session Breakdown: Day 5 - Software

12 / 94

System Setup �����

• Interact with a remote server
• Connect to database on remote server
• Execute code and download results

Learning to code in VSCode
Why switch from RStudio to VSCode for SQL development?

The �rst few things we are gonna do in VSCode is:

14 / 94

Connecting to remote development environment
As in most instances, you will likely be developing code on a remote machine, but would like to use VSCode as your
development environment.

This can easily be achieved using the Remote-SSH feature in the IDE. This allows for:

• Develop on the same operating system you deploy to or use larger, faster, or more specialized hardware than your
local machine.

• Quickly swap between different, remote development environments and safely make updates without worrying
about impacting your local machine.

• Access an existing development environment from multiple machines or locations.
• Debug an application running somewhere else such as a customer site or in the cloud.

15 / 94

• Once in the command console, type Remote SSH
and the search bar should come up with a
couple of options.

• Select Remote-SSH� Connect to Host .
• In both Linux and Windows the easiest is to

create a .ssh/vscode�config �le

Connecting to remote development environment
One of the most used shortcuts in VSCode you will use is Ctrl + Shift + P . This takes you to the IDE's
command console.

16 / 94

• Once in the command console, type Remote SSH
and the search bar should come up with a
couple of options.

• Select Remote-SSH� Connect to Host .
• In both Linux and Windows the easiest is to

create a .ssh/vscode�config �le

Connecting to remote development environment
One of the most used shortcuts in VSCode you will use is Ctrl + Shift + P . This takes you to the IDE's
command console.

17 / 94

• Once in the command console, type Remote SSH
and the search bar should come up with a
couple of options.

• Select Remote-SSH� Connect to Host .
• In both Linux and Windows the easiest is to

create a .ssh/vscode�config �le

Connecting to remote development environment
One of the most used shortcuts in VSCode you will use is Ctrl + Shift + P . This takes you to the IDE's
command console.

18 / 94

• Once in the command console, type Remote SSH
and the search bar should come up with a
couple of options.

• Select Remote-SSH� Connect to Host .
• In both Linux and Windows the easiest is to

create a .ssh/vscode�config �le

Connecting to remote development environment
One of the most used shortcuts in VSCode you will use is Ctrl + Shift + P . This takes you to the IDE's
command console.

19 / 94

• Once in the command console, type Remote SSH
and the search bar should come up with a
couple of options.

• Select Remote-SSH� Connect to Host .
• In both Linux and Windows the easiest is to

create a .ssh/vscode�config �le

Connecting to remote development environment
One of the most used shortcuts in VSCode you will use is Ctrl + Shift + P . This takes you to the IDE's
command console.

20 / 94

Install OpenSSH for Windows
• To install OpenSSH using PowerShell, run PowerShell as an Administrator . To make sure that OpenSSH is available,

run the following cmdlet :

Get-WindowsCapability -Online | Where-Object Name �like 'OpenSSH*'

• Install the OpenSSH Client

Add-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0

• Test the service

ssh 183.204.102.12\ubunto@servername

21 / 94

Logging into Server

What is shell?
Whenever we talk about black screen, command line or shell we are essentially talking about the interface that takes
input from the keyboard and sends it to the operating system (OS).

Almost all Linux distributions supply a shell program from the GNU Project called bash that looks like this:

hanjo@optimus:~$ penguin

This interface is called shell prompt and usually contains username@machinename:directory . If the last character of the
prompt is a hash mark (#) rather than a dollar sign ($), the terminal session has superuser privileges (a little bit
more on this later).

• Pressing the up ��� arrow on your keyboard goes into your command history.
◦ Be aware that history stores about 1,000 commands.

23 / 94

Different type of users

Superuser (root)
With great power comes great responsibility!

24 / 94

On a Linux system Superuser refers to the root user, who has unlimited
access to the �le system with privileges to run all Linux commands.

• This responsibility is mostly given to experienced SysAdmins. The
reason being there is no "take-backsies" in linux. Once a command
has been executed under sudo (superuser do) , there is almost
never a way to reverse the execution (ex. deleting a �le).

• The Superuser/Root is also responsible for setting up security and
thus, limiting the power to a single (or very few individuals is
preferred).

Different type of users

Superuser (root)
With great power comes great responsibility!

25 / 94

Basic shell commands
Try these basic commands:

date

�� Thu 30 May 2024 15�56�53 SAST

free �h

�� total used free shared buff/cache available
�� Mem: 62Gi 7.7Gi 41Gi 2.9Gi 13Gi 51Gi
�� Swap: 19Gi 0B 19Gi

cal

�� May 2024
�� Su Mo Tu We Th Fr Sa
�� 1 2 3 4
�� 5 6 7 8 9 10 11
�� 12 13 14 15 16 17 18
�� 19 20 21 22 23 24 25
�� 26 27 28 29 30 31
�� 26 / 94

Welcome to your new home
Welcome to your new home, or 127.0.0.1 as I would like to call it.

hanjo@optimus:~$ ls �lart

�� total 20
�� drwxr�xr�x 6 root root 4096 Dec 19 13�05 ��
�� �rw�r��r�� 1 hanjo hanjo 807 Dec 19 13�05 .profile
�� �rw�r��r�� 1 hanjo hanjo 3771 Dec 19 13�05 .bashrc
�� �rw�r��r�� 1 hanjo hanjo 220 Dec 19 13�05 .bash_logout
�� drwxr�xr�x 2 hanjo hanjo 4096 Dec 19 13�05 .

• Can anyone tell me what they think the �rw�r��r�� stands for?

Although we will not go deep into security in this course, it is good to understand some basics.

27 / 94

Permissions
Owners, Group Members, and Everybody Else

One of the fundamentals that were built into Linux systems from the start is the concept of it being a multiuser system.
This means that multiple users can log into the system at the same time without interfering (mostly) with each others
processes and �les.

In the Linux security model, a user may own �les and directories.

• When a user owns a �le or directory, the user has control over its access.
• Users can, in turn, belong to a group consisting of one or more users who are given access to �les and directories

by their owners.
• An owner may also grant some set of access rights to everybody, which in Linux terms is referred to as the world.

28 / 94

Permissions
Owners, Group Members, and Everybody Else

How does this look for the user I just created?

And for Superuser ubuntu ?

ubuntu@optimus:~$ id ubuntu
�� uid=1000(ubuntu) gid=1000(ubuntu) groups=1000(ubuntu),4(adm),20(dialout),24(cdrom),25(floppy),27(sudo),29(audio),30(dip),44(video

29 / 94

Basic Commands ������

Listing directories
To �nd out where in the tree you are, we can use a simple command called: pwd

hanjo@optimus:~$ pwd
�� /home/hanjo

Upon logging into a system, the terminal will always set your working directory to home also known as ~ .

• If you log in as a regular user, your home directory is the only place where you will be able to write and create �les.

So, now that we are in the system, what directories are in my home folder ?

hanjo@optimus:~$ ls
�� Data Desktop Documents Pictures

To list the �les and directories in the current working directory, we use the ls command. This command is very
versatile as you will see in a minute.

*

 Yours might look a bit different depending whether you are running Linux on a server or a desktop.*

31 / 94

Changing the current working directory
Obviously looking at �les in your home directory doesn't take you very far. We need to be able to navigate the �le
system in a quick and ef�cient manner.

The cd command in Linux is a powerful way to navigate the tree folder structure that is the �le system.

hanjo@optimus:~$ cd Data
hanjo@optimus:~/Data$

The two main methods for traversing the tree is: (1) Absolute Paths and (2) Relative Paths:

• Absolute Paths begins with the root redirectory / and expands to the folder you are interested in: /home/hanjo/
Data

• Relative Paths starts at the working directory and starts navigation from there. These paths have a special
notation, a single dot (.) and a dot dot (��). The . notation refers to the working directory, and the �� notation
refers to the working directory’s parent directory.

32 / 94

Changing the current working directory
Lets see an example of the absolute and relative path in action. Start by navigating the /usr/bin directory and listing
all the �les.

hanjo@optimus:~$ cd /usr/bin
hanjo@optimus:/usr/bin$ pwd
#/usr/bin
hanjo@optimus:/usr/bin$ ls
�� 2to3-2.7 funzip mpiCC splitfon ���

Now lets move to the /usr directory from our working directory /usr/bin . There are two ways to do this, either
absolute (cd /usr) or relative. Let us practice using the relative method.

hanjo@optimus:~$ cd /usr/bin
hanjo@optimus:/usr/bin$ cd ��
hanjo@optimus:/usr$ pwd
/usr
hanjo@optimus:/usr$ ls
bin/ games/ include/ lib/ lib32/ local/ sbin/ share/ src/

33 / 94

Changing the current working directory
There are also some nice shortcuts to be aware of:

• Change the working directory to your home directory: cd ~
• Change the working directory to the previous working dir: cd -
• Change the working directory to a speci�c user: cd ~ubuntu

34 / 94

Notes about �lenames in Linux
Filenames in Linux are quite special and if you have worked closely with someone who works in Linux, you would have
noticed some things. First and foremost:

• NEVER use a space in �lenames use an underscore (_) instead - thank me later ;-)
◦ ex. this file Name SUCKS 1/30/23.txt where this_is_much_better.txt

• Filenames that start with a . are hidden �les. The ls command will not list these unless you use a parameter ls

�a . These �les usually relate to con�guration settings.
◦ ex. .bashrc .

• CASE MATTERS, so dont ever use Capitals for folders or �lenames - it gets confusing.
◦ ex. This/path/IS/different/ . from /this/path/is/different/

• Linux does not have any concept of "�le extensions". So remember to name your �les in an appropriate manner if
you would like them to be readable by the correct application.
◦ ex. mypdffile and mypdffile.pdf is the same

See this presentation by Dr. Anna Krystalli for further tips on �le naming.

35 / 94

https://annakrystalli.me/rrresearch/03_filenaming.html#1
https://annakrystalli.me/rrresearch/03_filenaming.html#1

Getting to know 'ls'
The ls command is probably one of the most used commands that any Linux user will encounter from day to day. As
you will come to see, it is also one of the most powerful commands.

Let's start by listing the contents of /usr while our working directory is ~ :

hanjo@optimus:~$ ls /usr
bin/ games/ include/ lib/ lib32/ local/ sbin/ share/ src/

You can also ask for multiple directories in a single line:

hanjo@optimus:~$ ls /usr ~
�� /home/hanjo:
�� Data Desktop Documents Pictures
��
�� /usr:
�� bin games include lib lib32 local sbin share src

36 / 94

Options and Arguments
By now you should have noticed once or twice that I have added an options parameter to my commands: command �
options arguments . Type man ls to see all options for the ls command.

hanjo@optimus:~$ ls �l
�� total 16
�� drwxrwxr�x 2 hanjo hanjo 4096 Dec 20 09�23 Data
�� drwxrwxr�x 2 hanjo hanjo 4096 Dec 20 09�23 Documents

My favourite command is ls �lart which stands for "list ALL the contents in REVERSE order SORT BY TIME".

hanjo@optimus0�~$ ls �lart
�� total 40
�� drwxr�xr�x 6 root root 4096 Dec 19 13�05 ��
�� �rw�r��r�� 1 hanjo hanjo 807 Dec 19 13�05 .profile
�� �rw�r��r�� 1 hanjo hanjo 3771 Dec 19 13�05 .bashrc
�� �rw�r��r�� 1 hanjo hanjo 220 Dec 19 13�05 .bash_logout
�� �rw�------ 1 hanjo hanjo 26 Dec 19 13�35 .bash_history
�� drwxrwxr�x 2 hanjo hanjo 4096 Dec 20 09�23 Documents
�� drwxrwxr�x 2 hanjo hanjo 4096 Dec 20 09�23 Data
�� drwxr�xr�x 6 hanjo hanjo 4096 Dec 20 09�23 .

37 / 94

Creating �les and folders
Apart from knowing how to navigate folders, we must also know how to create �les and folders.

The basic commands for this is:

• Create folder

mkdir scripts
mkdir scripts data analysis

• Create �le

touch analysis.R

90% of the time you will be using the basic versions of these commands. But they can also do some pretty interesting
things.

38 / 94

Tricks and Tips for mkdir
• Create folders within folders that do not already exist (recursively create).

mkdir project/analysis/scripts
mkdir: cannot create directory ‘project/analysis/scripts’: No such file or directory

Correct usage
mkdir �p project/analysis/scripts

• What if I wanted to create a data , scripts and output folder in a single line?

Note, there is NO spaces in the array
mkdir �p project/analysis/scripts/{data,scripts,output}
cd project/analysis/scripts/ �� ll

• Current date in directory name

mkdir `date '+%Y%m%d'`

39 / 94

Viewing contents of �les
To view the contents of a �le, we use a program called less .

The less program was designed as an improved replacement of an earlier Unix program called more . The
name less is a play on the phrase "less is more" — a motto of modernist architects and designers.

more (developed in 1978) was replaced by less in 1983, �rst and foremost because more could only scroll forwards
through a text �le. less was written by Mark Nudelman and is currently being maintained by him to this day!

• Backwards movement
• Searching and highlighting
• Multiple �les

◦ Less allows you to switch between any number of different �les, remembering your position in each �le. You
can also do a single search which spans all the �les you are working with.

• Advanced features
◦ You can change key bindings, set different tab stops, set up �lters to view compressed data or other �le types,

customize the prompt, display line numbers, use "tag" �les, and more.

http://www.greenwoodsoftware.com/less/faq.html#mail

40 / 94

http://www.greenwoodsoftware.com/less/faq.html#mail
http://www.greenwoodsoftware.com/less/faq.html#mail

Viewing contents of �les
Lets start by looking at the users on the system:

hanjo@optimus0�~$ less /etc/passwd

Navigation:

• G - Move to the end of the text �le
• g - Move to the beginning of the text �le
• 10g - Move to the nth line
• q - Exit

Forward Search:

• /characters - Search forward
• n - Search forward
• N - Search backwards

41 / 94

Useful options for Less
Squeeze Blank Lines:

• The �s (squeeze blank lines) option removes a series of blank lines and replaces them with a single blank line.

Viewing Multiple Files:

• less file1.txt file2.txt

• To view the next �le, press : and then hit n .

Mark places:

• Press m and then a letter, example: a . To return to that mark press apostrophe ' and a .

Switch to editor:

• Pressing v while in less pushes you to default editor.
• sudo update�alternatives ��config editor

42 / 94

Redirection in Linux �����������

Redirection & Piping
This is maybe one of the coolest features of command line that you will learn: Redirecting or piping your results into
another command. The Input/Output allows us to chain together commands and build pipelines of instructions.

• I/O redirection (>) allows us to change where output goes and where input comes from.
◦ A good example of this would be the ls command we learned earlier.

hanjo@optimus0�~$ ls �l
hanjo@optimus0�~$ ls �l > all_files.txt
hanjo@optimus0�~$ less all_files.txt

We can also append a �le using (��):

hanjo@optimus0�~$ ls �l �� all_files.txt
hanjo@optimus0�~$ ls �l �� all_files.txt
hanjo@optimus0�~$ ls �l �� all_files.txt
hanjo@optimus0�~$ less all_files.txt

44 / 94

Redirection & Piping
In the previous examples we redirected only the stdout of the command. But, we sometimes also want to redirect the
errors or Standard Error (stderr).

To do this we add an additional command to the end of the line (2>&1):

hanjo@optimus0�~$ ls �l > all_files.txt 2>&1
hanjo@optimus0�~$ less all_files.txt

We redirect �le descriptor 2 (standard error) to �le descriptor 1 (standard output) using the notation 2>&1 .

Once we know the concept of standard output and input, we can start stringing commands together. These are called
pipelines and it looks this, command1 pipes into command2 :

command1 | command2

Here we can see that command2 takes command1 's output as its input. As you get more comfortable with the terminal,
these become core concepts you will use every day.

45 / 94

• Remote -SSH
• Rainbow CSV
• autopep8
• R Extension for Visual Studio Code
• Spelling Checker for Visual Studio Code
• SQLTools

Installing the recommended Extension
Installing Extensions in VSCode is pretty straight forward. Just navigation to the search tab using GUI. Then search and
install the following:

• Linux shortcut

wget -O extentions.sh https:��bit.ly/3GrF5kn
bash extentions.sh

46 / 94

Getting ready for ������
We will be working in VSCode using whats called Workspaces . But the �rst step is to setup your folder structure.

hanjo@optimus0�~$ mkdir �p ~/projects/polars

Next open the folder:

• File > Open Folder

47 / 94

How is that for setup?

48 / 94

Markdown �������������

What is Rmarkdown/Quarto?

R Markdown wizard monsters creating a R Markdown document from a recipe. Art by Allison Horst

50 / 94

https://github.com/allisonhorst/stats-illustrations
https://github.com/allisonhorst/stats-illustrations

What is markdown?

Markdown is a lightweight markup language for creating formatted text using a plain-text editor. John
Gruber and Aaron Swartz created Markdown in 2004 as a markup language that is appealing to human
readers in its source code form. Markdown is widely used in blogging, instant messaging, online forums,
collaborative software, documentation pages, and readme �les.

— Wikipedia

• Abstraction layer above certain compiling formats such as PDF, HTML, Word (XML).
◦ This is pretty cool as you only have to learn the very basic syntax of markdown to be able to convert your

document to any of the formats.
• Rstudio uses a productive notebook interface (called Rmarkdown) to weave together narrative text and code

to produce elegantly formatted output.
◦ Great thing is it supports over 51 languages. Main ones are R , python , shell and SQL .

• Rmarkdown has recently been 'replaced' with Quarto which works in VSCode!

51 / 94

Understanding markdown in VSCode
Start by opening a new Quarto �le (.qmd) in a folder called projects/polars .

52 / 94

Understanding markdown in VSCode
Add to a new �le: README.qmd

���
title: "Learning Polars"
title�block�banner: true
date: today
format:
 html:
 code�fold: true
 toc: true
 theme:
 light: flatly
 dark: darkly
execute:

echo: true
eval: false

���

Overview

I am going to be learning Polars!

53 / 94

Understanding markdown in VSCode
We need to render our documents in order to produce the output.

• Press the render button at the top OR (be cool) and use CTRL + SHIFT + k !

54 / 94

Components of markdown

55 / 94

Components of markdown: YAML
YAML: YAML Ain't Markup Language

The YAML component speci�es the metadata of the �le:

• Type of output to produce
• Formatting preferences of things like tables
• Other metadata such as document title, author, and date.

YAML is dependent on indentation so be careful:

���
title: "Learning Polars"
title�block�banner: true
date: today
format:
 html:
 code�fold: true
 toc: true
 theme:
 light: flatly
 dark: darkly
execute:
 echo: true
 eval: false
��� 56 / 94

For now, we will only use the code chunks as a documentation tool
for any code that we write. Later on in the course we will actually be
executing the code to produce tables and plots in a document!

Each chunk is opened with a line that starts with three back-ticks,
and curly brackets that contain parameters for the chunk ({ }). The
chunk ends with three more back-ticks.

��� use shortcut (CTRL + ALT + i) to open chunk

Components of markdown: Code Chunks
Code Chunks are the sections of the document where you will write your code that you wish to include into your
document.

57 / 94

Components of markdown: Code Chunks
What do we mean by parameters in the {} brackets? Lets start with the programming language speci�cation.

• They start with r to indicate that the language name within the chunk is R (we can also do python or sql
etc.)

• After the r you can optionally write a chunk "name" - good practice for debugging later on

The chunk can include other options too, written as tag : value , such as:

• eval: false to not run the R code.
• echo: false to not print the chunk's R source code in the output document.
• warning: false to not print warnings produced by code.
• message: false to not print any messages produced by code.
• include: true/false whether to include chunk outputs (e.g. plots) in the document.
• out.width and out.height provide in style out.width: "75%" .
• fig.align: "center" adjust how a �gure is aligned across the page.
• fig.show: 'hold' if your chunk prints multiple �gures and you want them printed next to each other (pair

with out.width: c("33%", "67%") . Can also set animate to concatenate multiple into an animation.

58 / 94

Components of markdown: Markdown Text
Markdown Text is what makes using it as a lab-book (and writing journal articles) so versatile.

������� Would you believe that these slides were all made in using Rmarkdown ?

So lets start with some basics: Headings and Formatting

Header 1

�� Header 2

��� Header 3

So how would this text look ?

So _how_ would ��this�� text `look`?

59 / 94

- Fruits
- Vegtables
 * Carrot
 * Spinach

• Fruits
• Vegtables

◦ Carrot
◦ Spinach

1. Dog
 - German Shepherd ��two spaces)
 - Belgian Shepherd ��two spaces)
2. Cat
 - Siberian ��two spaces)
 - Siamese ��two spaces)

�. Dog
◦ German Shepherd #(two spaces)
◦ Belgian Shepherd #(two spaces)

�. Cat
◦ Siberian #(two spaces)
◦ Siamese #(two spaces)

Components of markdown: Markdown Text
Unordered list items start with * , - , or + , and you can nest one list within another list by indenting the sub-list:

60 / 94

Your turn!
Can you produce the following document?

61 / 94

10�00

Connection from
VScode �����

Start your notebook for this section

63 / 94

• port: 3306
• database: amazon
• user: ubuntu
• 0c32348ad0361269b

Fill in the information

64 / 94

Connect to database

65 / 94

Polars ������

Expression API:

• Allows for manipulation on selection
• Parallel manipulation if multiple columns

being mutated
• Query optimization for lazy

Why Polars?
Pandas is de�nitely the most used data wrangling library in Python, but recently there is a new kid on the block:
Polars

Its built on Rust and has some amazing features that I believe will make it the de facto library in years to come. It
relies on the Apache Arrow Memory Model and Wes McKinney, the creator of Pandas, is heavily involved in Arrow.

https://pola-rs.github.io/polars/py-polars/html/reference/index.html

67 / 94

https://pola-rs.github.io/polars/py-polars/html/reference/index.html
https://pola-rs.github.io/polars/py-polars/html/reference/index.html

Why Polars?
I really like the fact that python and R is starting to play nice and taking the best from each language. I never
learned pandas because it reminded me of base R which I found very dif�cult as an economist when I started out.
But oh, how things have changed!!

Can you tell me what the following code does?

(
 df.select(
 [
 pl.col("Col1"),
 pl.col("Col2").str.to_lowercase(),
 pl.col("Col3").round()
]
)
)

68 / 94

Data Types & Apache Arrow
We mentioned Arrow earlier. Arrow is an Apache project where they look to best represent tabular data in memory.

• A speci�cation for how data should be represented in memory (Rust)
• A set of libraries in different languages that implement this speci�cation (R AND python)
• Sharing data without copying
• Fast vectorized calculations
• Consistent representation of missing data

69 / 94

Using environments
Before we kick off with some analysis. Lets create an environment. What is it you ask? Imagine you have some of
puzzles that you like playing with:

• A virtual environment is like a separate box for each puzzle you're working on.
• Inside this box, you put all the pieces (packages) you need for that puzzle.
• This keeps everything organized and prevents mix-ups between different puzzles.
• You can switch between these boxes (or 'environments') depending on the puzzle you're working on.

Its especially nice to ensure you dont mix up namespaces and its a MUST when developing your own packages.
More on this later the week.

70 / 94

Using environments
Now that you now basic Linux, its easy to create a venv :

• Step 1: Create the necessary folders:

mkdir ~/.virtualenvs/
cd ~/.virtualenvs/
sudo apt install python3.10-venv

Step 2: Create the environment and activate it.

python3 �m venv polars
source ~/.virtualenvs/polars/bin/activate

71 / 94

Using venv in VSCode
• add to vim ~/.bashrc

function py_activate(){
source ~/.virtualenvs/$1/bin/activate

}

72 / 94

Using venv in VSCode
Open project folder:

73 / 94

Using venv in VSCode
Create dev.py and set python interpreter to ~/.virtualenvs/polars/bin/python3

74 / 94

Basics of polars
�� Remember to always set your python interpreter OR use workspaces in VSCode!

pip install polars

75 / 94

Basics of polars
We are going to start with basic things and load the ~/worldcup.csv dataset found on the server:

• In dev.py

import polars as pl

csvfile = '~/data/worldcup.csv'
df = pl.read_csv(csvfile)

df.head()
df.glimpse()

76 / 94

Basics of polars
We are going to start with basic things and load the ~/worldcup.csv dataset found on the server:

• In dev.py

df.head()
��� df.head()
shape: (5, 10)
┌──────┬─────────────┬──────────────┬────────────────┬───┬──────────────┬───────┬───────┬────────────┐
│ year ┆ host ┆ winner ┆ second ┆ … ┆ goals_scored ┆ teams ┆ games ┆ attendance │
│ ��� ┆ ��� ┆ ��� ┆ ��� ┆ ┆ ��� ┆ ��� ┆ ��� ┆ ��� │
│ i64 ┆ str ┆ str ┆ str ┆ ┆ i64 ┆ i64 ┆ i64 ┆ i64 │
╞══════╪═════════════╪══════════════╪════════════════╪═══╪══════════════╪═══════╪═══════╪════════════╡
│ 1930 ┆ Uruguay ┆ Uruguay ┆ Argentina ┆ … ┆ 70 ┆ 13 ┆ 18 ┆ 434000 │
│ 1934 ┆ Italy ┆ Italy ┆ Czechoslovakia ┆ … ┆ 70 ┆ 16 ┆ 17 ┆ 395000 │
│ 1938 ┆ France ┆ Italy ┆ Hungary ┆ … ┆ 84 ┆ 15 ┆ 18 ┆ 483000 │
│ 1950 ┆ Brazil ┆ Uruguay ┆ Brazil ┆ … ┆ 88 ┆ 13 ┆ 22 ┆ 1337000 │
│ 1954 ┆ Switzerland ┆ West Germany ┆ Hungary ┆ … ┆ 140 ┆ 16 ┆ 26 ┆ 943000 │
└──────┴─────────────┴──────────────┴────────────────┴───┴──────────────┴───────┴───────┴────────────┘

77 / 94

Basics of polars
We are going to start with basic things and load the ~/worldcup.csv dataset found on the server:

• In dev.py

df.glimpse()

��� df.glimpse()
Rows: 21
Columns: 10
$ year <i64> 1930, 1934, 1938, 1950, 1954, 1958, 1962, 1966, 1970, 1974
$ host <str> Uruguay, Italy, France, Brazil, Switzerland, Sweden, Chile, England, Mexico, Germany
$ winner <str> Uruguay, Italy, Italy, Uruguay, West Germany, Brazil, Brazil, England, Brazil, West Germany
$ second <str> Argentina, Czechoslovakia, Hungary, Brazil, Hungary, Sweden, Czechoslovakia, West Germany, Ital
$ third <str> USA, Germany, Brazil, Sweden, Austria, France, Chile, Portugal, West Germany, Poland
$ fourth <str> Yugoslavia, Austria, Sweden, Spain, Uruguay, West Germany, Yugoslavia, Soviet Union, Uruguay, B
$ goals_scored <i64> 70, 70, 84, 88, 140, 126, 89, 89, 95, 97
$ teams <i64> 13, 16, 15, 13, 16, 16, 16, 16, 16, 16
$ games <i64> 18, 17, 18, 22, 26, 35, 32, 32, 32, 38
$ attendance <i64> 434000, 395000, 483000, 1337000, 943000, 868000, 776000, 1614677, 1673975, 1774022

78 / 94

Nice con�gs for polars
pl.Config.set_tbl_rows(100)
pl.Config.set_tbl_cols(100)

 dir(pl.Config)
��'��annotations��', '��class��', '��delattr��', '��dict��', '��dir��', '��doc��', '��enter��', '��eq��', '�� �� �� �

79 / 94

Data Types
Lets what data types and schemas the data contains:

df.schema # better
df.dtypes
df["Name"].dtype

��� df.schema # better
{'year': Int64, 'host': Utf8, 'winner': Utf8, 'second': Utf8, 'third': Utf8, 'fourth': Utf8, 'goals_scored': Int64,
��� df.dtypes
[Int64, Utf8, Utf8, Utf8, Utf8, Utf8, Int64, Int64, Int64, Int64]
��� df["goals_scored"].dtype
Int64

80 / 94

• polars.DataType
• polars.Decimal
• polars.Float32
• polars.Float64
• polars.Int8
• polars.Int16
• polars.Int32
• polars.Int64
• polars.UInt8
• polars.UInt16
• polars.UInt32
• polars.UInt64
• polars.Date

• polars.Datetime
• polars.Duration
• polars.Time
• polars.Array
• polars.List
• polars.Struct
• polars.Boolean
• polars.Binary
• polars.Categorical
• polars.Null
• polars.Object
• polars.Utf8
• polars.Unknown

Data Types
There are multiple types of data types in polars , its nice to know some of the basic types because once you move
into 'high' performance analytics. These matter a lot. But for now, we gonna use them in selecting columns ���

81 / 94

Selecting Columns
To select columns, we wrap the selection in pl.col using the .select() method on a data frame:

(
 df.select(
 [
 pl.col("host"),
 pl.col("year")
]
)
)

We can also apply some transformation in the select :

(
 df.select(
 [
 pl.col("host").str.to_lowercase(),
 pl.col("year").alias('year_game_played')
]
)
)

82 / 94

Your turn!
Select the winner and goals scored columns for me!

Then

Select attendance and rename to spectators

83 / 94

10�00

Putting your �rst script into production
Start by creating a new folder:

• ~/projects/production/python

Then create a python �le: say_hello.py

��/usr/bin/python3

import datetime

now = datetime.datetime.now()

if ��name�� �� "��main��":
 print(f'[{now}] - Hello, World!')

• The shebang is a special kind of comment that you may include in your source code to tell the operating system's
shell where to �nd the interpreter for the rest of the �le. (especially useful when using environments)

It's not uncommon to combine a shebang with the name�main idiom:

• Prevents the main block of code from running when someone imports the �le from another module

Last step, make the �le executable: chmod �x say_hello.py 84 / 94

Learning basics of VIM �������������

Why learn VIM?

Linux Command Line, 2nd Edition - Jr. William E. Shotts

86 / 94

Why learn VIM?
So why learn VIM when you have something like VSCode or Rstudio as an IDE?

• VIM is ubiquitous on all Unix systems, which mean you will always have access to an editor, even if your front-end
crashes.

• VIM is powerful and fast. Sometimes you just need to change a simple con�g �le and VIM works best for these
times. Also, you may not have GUI access when doing routine SysAdmin tasks as root.

• Once you have mastered VIM , then there are few way to be more ef�cient in typing up code or changing �les since
you never need a mouse.

• We don’t want other Linux and Unix users to think we are cowards.

1

2

 No one on earth can say that they have mastered VIM.

 Its a joke from Linux Command Line, 2nd Edition, but still true ������

1

2

87 / 94

First things �rst, how to exit
Stackover�ow, helping people exit vim since 2011.

To exit we enter the editor with : , then type q and a ! (the exclamation, ! , means to force close):

:q!

88 / 94

Basics of editing a �le
�� Follow my commands before typing. Do not type anything yet!

Remember, if something bad happens just press ESC a couple of times and then exit VIM with :q!

hanjo@optimus0�~$ vim owner_information.txt

• In VIM, every keystroke is a speci�c command, this type of editor is known as a modal editor.
◦ VIM starts by going into command mode, which means it expects commands, NOT input text.

To type something we must go to Insert Mode. To do this, type i . You should see the following at the bottom:

��INSERT��

Now, type the following:

[owner] Hanjo Odendaal

Save and exit by pressing ESC and :wq

89 / 94

Putting your �rst script into production
The time has come!

90 / 94

Cronjobs and crontabs
What is cron?

The cron command-line utility, also known as cron job is a job scheduler on Unix-like operating systems.

Lets open crontab:

hanjo@optimus0�~$ crontab �e

For details see man 4 crontabs

Example of job definition:
.---------------- minute (0 - 59)
| .------------- hour (0 - 23)
| | .---------- day of month (1 - 31)
| | | .------- month (1 - 12) OR jan,feb,mar,apr ���
| | | | .---- day of week (0 - 6) (Sunday=0 or 7) OR sun,mon,tue,wed,thu,fri,sat
| | | | |
* * * * * user�name command to be executed

91 / 94

Cronjobs and crontabs
Lets say that the script must run every minute and output to a �le in a folder called logs :

 * * * * ~/projects/production/python/say_hello.py �� ~/logs/python_logs.log 2>&1

For example, you can run a backup of all your user accounts
at 5 a.m every week with:
0 5 * * 1 tar �zcf /var/backups/home.tgz /home/

For more information see the manual pages of crontab(5) and cron(8)

m h dom mon dow command

92 / 94

The end

93 / 94

Production
Implement the following script in production. I want this to be in our production folder, call it football_watcher.py .
This has to run every MONDAY morning at 08:00 for me.

����� Go to https://crontab.guru/

import polars as pl
csvfile = '~/data/worldcup.csv'

df = pl.read_csv(csvfile)
df.head()

94 / 94

30�00

https://crontab.guru/
https://crontab.guru/

Learning Polars with Python
Section 2

Selection expression
What you just used was called an 'expression'. Its using verbs to express what you need from code in English.

You can also do in the more 'classic' way, but its not recommended. When we get to LazyFrames and chaining you
will see why:

df[range(1, 5), "winner"]

df.select(pl.col('winner'))

2 / 46

Selection expression
Lets see some more examples:

(
 df
 .select('winner')
 .to_series()
 .head(3)
)

(
 df
 .select(['winner', 'second'])
 .head(3)
 .to_series()
)

3 / 46

Being smarter on your select
Polars has some really nice smart selector helpers. Lets explore some.

• .all + .exclude

(
 df.select(
 pl.all()
)
)

(
 df.select(
 pl.all().exclude(["games", "spectators"])
)
)

4 / 46

Being smarter on your select
Polars has some really nice smart selector helpers. Lets explore some.

• Regex (for the brave ������)
• Has to have "^something$"

(
 df.select(
 pl.col("^goals.*$")
)
)

(
 df.select(
 pl.col("^goals.*$").max()
)
)

5 / 46

Being smarter on your select
Polars has some really nice smart selector helpers. Lets explore some.

• Select on type

(
 df.select(
 pl.col(pl.Int64)
)
 .head(3)
)

6 / 46

Your turn!
Select all besides the the team that came third

Only select string columns for me and transform to lowercase

Select attendance and tell me what minimum and median and mean attendance was (Tip: Google is
your friend)

7 / 46

25�00

Rename
Often times the column names are not easy to work with. When this happens, we need to rename. This can easily
be done by using the simple .rename method:

(
 df
 .rename({"PassengerId":"ID"})
 .head(2)
)

Can also mass a list:

(
 df
 .rename(
 {

"second":"runner_up",
"attendance":"people",

 }
)
 .head(2)
) 8 / 46

Drop
Just like .rename , you can use .drop to get rid of unnecessary columns

(
 df
 .drop(
 [

"fourth",
"host"

]
)
 .head(2)
)

9 / 46

Missing Values
In Pandas a missing value can be represented with a null , NaN or None value depending on the dtype of the
column. Polars also allows NaN values for �oating point columns as we will see.

df = pl.DataFrame(
 {

'col1':[0,None,2],
"col2":[None,None,5]

 }
)
df

Polars stores a count of how many null values there are. We can access this with the null_count method on a
single column or on all the columns

df.null_count()

10 / 46

Missing Values
We use the is_null expression to �nd out whether each value is null and is_not_null for the opposite. In the
following section you will see how we can use it in a �ltering expression.

(
 df
 .select(
 [
 pl.col("col1"),
 pl.col("col1").is_null().alias("is_null"),
 pl.col("col1").is_not_null().alias("is_not_null")
]
)
)

11 / 46

Filtering
Selecting multiple rows using list , slice , range , but NOT boolean! Lets start with the basics again. Read in the
worldcup data set.

• list

◦ We can pass a list of integers []

df[[1, 3]]

• slice

◦ we can use slice notation

df[�3]

12 / 46

Filtering
Selecting multiple rows using list , slice , range , but NOT boolean! Lets start with the basics again. Read in the
worldcup data set.

• range

◦ range of integers

df[range(1, 5)]

• Boolean list not accepted!

df[df["Age"] > 30]

13 / 46

Filtering
Although we can use list , slice and range , its much easier to use the expression API.

csvfile = '~/data/worldcup.csv'

df = pl.read_csv(csvfile)

(
 df
 .filter(
 pl.col("winner") �� 'France'
)
)

14 / 46

Filtering
Replaces .loc from pandas we can use .with_row_count method.

(
 df
 .with_row_count(name = "row_nr")
 .filter(
 pl.col("row_nr") > 10
)
)

(
 df
 .with_row_count(name = 'row_nr')
 .filter(
 pl.col("row_nr").is_between(4, 10)
)
)

What if we want a sample of the data set to work with:

(
 df.sample(n = 10)
)

15 / 46

Filtering
• Winner is France and year is 2018?

(
 df
 .filter(pl.col('winner') �� 'France')
 .filter(pl.col('year') �� 2018)
).glimpse()

BUT

(
 df
 .filter(
 (pl.col('winner') �� 'France') &
 (pl.col('year') �� 2018)
)
).glimpse()

(
 df
 .filter(
 (pl.col('winner') �� 'France') |

16 / 46

Filtering
Filter where the teams are greater than 18

We can also be creative. How do we �lter where the attendance is larger than the mean?

17 / 46

25�00

Sorting
df.sort("attendance")

df.sort(["attendance", "games"], descending = True, nulls_last = True)

18 / 46

Mutating columns
What do we mean by 'mutating columns'? These are row operations and can be that we want to add columns or
perhaps change them in some manner.

df.with_columns(
 (pl.col('goals_scored')/ pl.col('games')).alias('average_goals')
)

Lets change the format:

(
 df.with_columns(
 (pl.col('goals_scored')/ pl.col('games'))
 .round(2)
 .alias('average_goals')
)
)

19 / 46

(
 df.with_columns(
 (pl.col('goals_scored')/ pl.col('games'))
 .round(2)
 .alias('average_goals')
).with_columns(
 pl.lit('football').alias('type')
)
)

(
 df.with_columns(
 [
 (pl.col('goals_scored')/ pl.col('games'))
 .round(2)
 .alias('average_goals'),
 pl.lit('football').alias('type')
]
)
)

Mutating columns
We can also add a constant to the data frame:

20 / 46

(
 df
 .with_columns(
 pl.col(pl.Utf8).str.to_uppercase()
)
 .select(
 pl.col(pl.Utf8)
)
 .head(2)
)

(
 df
 .with_columns(
 (pl.col('goals_scored')/ pl.col('games'))
 .alias('average_goals'),
)
 .with_columns(
 pl.col(pl.Float64).cast(pl.Int64)
)
 .head(2)
)

Mutate on type
One of the best ways to mutate multiple columns that might need cleaning is using the dtype .

21 / 46

Mutating columns
(
 df
 .with_columns(
 (
 pl.col('goals_scored')/pl.col('games')
)
 .round(2)
 .alias('average_goals')
)
 .sort('average_goals', descending = True)
 .select(
 ['year','host', 'winner', 'average_goals','games', 'goals_scored']
).head(3)
)

22 / 46

Mutating columns
Another cool feature is to mutate row-wise across multiple columns

(
 df
 .with_columns(
 pl.max(
 [
 pl.col('teams'), pl.col('games')
]
)
 .alias('max_games_teams')
)
)

23 / 46

seriesA = (
 df.with_columns(
 (pl.col('goals_scored')/ pl.col('games'))
 .round(2)
 .alias('average_goals')
).with_columns(
 pl.lit('seriesA').alias('type')
)
)

seriesB = (
 df.with_columns(
 (pl.col('goals_scored')/ pl.col('games'))
 .round(2)
 .alias('average_goals')
).with_columns(
 pl.lit('seriesA').alias('type')
)

pl.concat([seriesA, seriesB], how="vertical")
pl.concat([seriesA, seriesB], how="diagonal")

Mutating frames
Options to join frames:

• 'vertical', 'diagonal', 'horizontal', 'align'

24 / 46

import polars as pl

csvfile = '~/data/amazon/amazon_reviews_us_Watches_v1_00.tsv'
df = pl.read_csv(csvfile)

��� What do you see?

Lets play with a bit with Amazon reviews!
Lets play with a bit with Amazon reviews

25 / 46

Group By
Lets play with a bit with Amazon reviews

import polars as pl

csvfile = '~/data/amazon/amazon_reviews_us_Watches_v1_00.tsv'
df = pl.read_csv(csvfile, separator = '\t', ignore_errors = True)

df.glimpse()

26 / 46

• first get the �rst element of each group
◦ last get the last element of each group
◦ n_unique get the number of unique

elements in each group
◦ count get the number of elements in each

group
◦ sum sum the elements in each group
◦ min get the smallest element in each

group
◦ max get the largest element in each group
◦ mean get the average of elements in each

group
◦ median get the median in each group
◦ quantile calculate quantiles in each

group

(
 df
 .groupby("verified_purchase")
)
<polars.dataframe.groupby.GroupBy object at 0�7f54aa0a40

Group By
Time to play with aggregations! Think of it as Pivot Tables. So, mean by, or count by or n_unique in a number of
groups. The methods we can all on GroupBy in mode are:

27 / 46

Group By
(
 df
 .groupby("host")
 .count()
)

(
 df
 .groupby("attendance")
 .mean()
)

(
 df
 .groupby("winner")
 .n_unique()
)

28 / 46

Group By
• We can also use our nice column selectors to pull out the correct columns to remove the Null columns

(
 df
 .groupby('verified_purchase')
 .mean()
 .select(
 [
 pl.col('verified_purchase'),
 pl.col(pl.Float64)
]
)
)

29 / 46

Group By
• We can pass a list to .agg to set out different aggregations.

(
 df
 .groupby('verified_purchase')
 .agg(
 [
 pl.col('star_rating').mean(),
 pl.col('total_votes').max()
]
)
)

30 / 46

Group By
• What if we want to do aggregations across columns?

(
 df
 .groupby('verified_purchase')
 .agg(
 [
 pl.col(colName).max()

for colName in
 ['helpful_votes','total_votes']
]
)
)

31 / 46

(
 df
 .filter(
 pl.col('product_title')
 .str.contains('Rolex')
)
)

(
 df
 .with_columns(
 pl.when(
 pl.col('product_title')
 .str
 .contains('Rolex')
)
 .then(1).otherwise(0)
 .alias('Rolex')
)
)

Analyzing Amazon watches
• Lets analyse Rolex watches!

����� We can use filter and contains to look for Rolex in the product_title :

32 / 46

Analyzing Amazon watches
• What percentage of reviews were helpful?

• Are the Rolex star_ratings higher than the rest of the watches?

• Is there a person who has made more than one Rolex review?

33 / 46

45�00

Joins

34 / 46

review_ratings = (
 df
 .select(
 [
 pl.col('review_id'),
 pl.col('star_rating')
]
)
)

review_body = (
 df
 .select(
 [
 pl.col('review_id'),
 pl.col('review_body')
]
)
)

Joins
To understand joins, lets start by breaking up amazon into two data sets and then put them back together.

• Create review_ratings and review_body
• Lets now put it back together using review_id !

review_ratings.join(review_body, on = "review_id", how = "left")

35 / 46

Joins
Create two data frames that contain

• DF One: reviews_id & star_ratings and sample 1000 rows
• DF Two: reviews_id & total_votes

Then get the median for the star_ratings for these samples.

����� You need to use inner join.

36 / 46

45�00

Itteration
We can iterate over a single column just as we would do with a Pandas column or a Numpy array. Its nice for
pulling out as array.

[year� 2 for year in df["year"]]

[(row[0],row[1]) for row in df.rows()]

The iter_row method, as the name suggests, allows you to iterate over the rows in the DataFrame. This method
returns a generator which you can use in a loop to access each row one by one. This can be useful if you need to
process each row in sequence, or if you need to process each row individually and the dataset is too large to �t
into memory all at once.

[row['host'] for row in df.iter_rows(named=True)]

The rows method, on the other hand, would allow you to access a particular row directly by index, but this is
generally a less common operation in DataFrame-style processing, as operations are usually vectorized (i.e.,
performed on entire columns at once).

[row['host'] for row in df.rows(named=True)]
37 / 46

Function & Itteration
Lets see how this itteration could be used in a function:

• Lets about it in a string

def printer(row):
"""

 Function prints the game
 """

 res = f"""The host was {row['host']} and winner was {row['winner']}"""

 print(res)
return

[printer(row) for row in df.iter_rows(named=True)]

38 / 46

Seeing what polars can do: Lazy
They say polars is ef�cient. So lets start of with a small dataset of 1,000,000 rows of amazon reviews. ���. It can also
read from a compressed �le!

csvfile = "~/data/amazon.tsv.gz"
df = (
 pl.read_csv(csvfile, separator = '\t', ignore_errors = True)
)
df

df.glimpse()

39 / 46

Seeing what polars can do: Lazy
To see what the 'execution plan' is, we can use .explain to see what polars is going to do.

csvfile = "~/data/games.tsv"
(
 pl.scan_csv(csvfile, separator = '\t', ignore_errors = True)
 .explain()
)

40 / 46

Lazy mode
• Applies optmized query optimization

csvfile = "~/data/games.tsv"
df = pl.scan_csv(csvfile, separator = '\t', ignore_errors = True).fetch(3)
df.glimpse()

(
 pl.scan_csv(csvfile, separator = '\t', ignore_errors = True)
 .groupby(["star_rating"])
 .agg(pl.col("star_rating").count().alias("counts"))
 .explain
)

• Streaming = True process in stream (larger than RAM data)

(
 pl.scan_csv(csvfile, separator = '\t', ignore_errors = True)
 .groupby(["star_rating"])
 .agg(pl.col("star_rating").count().alias("counts"))
 .collect(streaming = True)
)

41 / 46

Analyzing LARGE data sets
Lets say we have a data set that is around 5GB. This is a very large data set to analyse in memory. Lets now employ
lazy mode in polars .

42 / 46

csvfile = "~/data/amazon��.tsv"
(
 pl.scan_csv(csvfile, separator = '\t',
 ignore_errors = True)
 .select(
 pl.count()
)
 .explain()
)

csvfile = "~/data/amazon��.tsv"
(
 pl.scan_csv(csvfile, separator = '\t',
 ignore_errors = True)
 .select(
 pl.count()
)
 .collect(streaming = True)
)

Analyzing LARGE data sets
Lets say we have a data set that is around 5GB. This is a very large data set to analyse in memory. Lets now employ
lazy mode in polars .

• Step 1: How many rows are we talking about?

43 / 46

csvfile = "~/data/amazon��.tsv"
(
 pl.scan_csv(csvfile, separator = '\t',
 ignore_errors = True)
 .groupby(["product_category"])
 .agg(pl.col("product_category")
 .count().alias("counts"))
 .explain()
)

csvfile = "~/data/amazon��.tsv"
(
 pl.scan_csv(csvfile, separator = '\t',
 ignore_errors = True)
 .groupby(["product_category"])
 .agg(pl.col("product_category")
 .count().alias("counts")
)
 .collect(streaming = True)
)

Analyzing LARGE data sets
Lets say we have a data set that is around 5GB. This is a very large data set to analyse in memory. Lets now employ
lazy mode in polars .

• Step 2: Now we can count the number of observations per category

44 / 46

Analyzing LARGE data sets
Lets say we have a data set that is around 5GB. This is a very large data set to analyse in memory. Lets now employ
lazy mode in polars .

• Step 3: Filter and sort the results...

• Step 4: Do the results add up to our initial count?

45 / 46

25�00

Analyzing LARGE data sets
• https://stackover�ow.com/questions/76391153/python-polars-lazy-frame-row-count-not-equal-wc-l

46 / 46

https://stackoverflow.com/questions/76391153/python-polars-lazy-frame-row-count-not-equal-wc-l
https://stackoverflow.com/questions/76391153/python-polars-lazy-frame-row-count-not-equal-wc-l

Learning Polars with Python
Section 3

import pathlib #info about where things are stored
from setuptools import setup, find_packages

HERE = pathlib.Path(��file��).parent # anchoring p
print(HERE)

VERSION = '1.2.0'
PACKAGE_NAME = 'dbutils'
AUTHOR = 'JUSTE NYIRIMANA'
AUTHOR_EMAIL = 'justenyirimana@gmail.com'
URL = 'justenyirimana@gmail.com'

LICENSE = 'MIT'
DESCRIPTION = 'DBUTILS is a collection of functions that

Dbutils
Do you have problems connecting to databases? Do you put passwords in plain text in python scripts (Big No no!)?
What if you want to write to BD?

• Well, we have the answer for you!

2 / 12

Traditional way of uploading data
In the traditional way of uploading data to a DB, the best way is to (1) copy the CSV to the machine, (2) create the
table in the database and (3) then upload the data using the load command.

• Create a DB

CREATE DATABASE workshop

• Connect to mysql through VSCode and create the table in the database

DROP TABLE IF EXISTS property;
CREATE TABLE property(
 property_type VARCHAR(255),
 addresslocality VARCHAR(255),
 bedrooms INT,
 bathrooms INT,
 derived_lcy DOUBLE PRECISION NOT NULL
);

3 / 12

Traditional way of uploading data
In the traditional way of uploading data to a DB, the best way is to (1) copy the CSV to the machine, (2) create the
table in the database and (3) then upload the data using the copy command.

• Next upload the data to the database

��LOAD DATA INTO DB
LOAD DATA LOCAL INFILE '/home/ubuntu/data/property/property.csv'
INTO TABLE workshop.property
FIELDS TERMINATED BY ','
;

4 / 12

Exercises for SQL
• What is the average and standard deviation of house prices?
• How much more expensive is adding an extra bedroom and going from a 2 to 3 bedroom if I RENT?
• Where are the most expensive houses for sale?

5 / 12

30�00

Now for dbutils!!
What happens if we want to interact with the database through python ? Well, you can either write your own
functions or just use our dbutils package! The main class is: Query , and it has the following methods:

• sql_query

◦ Helps to query the database
• sql_write

◦ Helps to write data from python to mysql DB
• sql_execute

◦ Executes raw sql commands

Obviously on can extend this package quite a lot, but these are the nice basic functions we use from day to day.
Now lets do what we did above, but using dbutils

�. Create a folder: ~/projects/analytics/dbutils and activate your polars environment!
�. Download the .whl from the website and upload your folder
�. Install the .whl using the �le: pip install dbutils.whl from CLI
�. Install decouple so that we dont have plain text password �les: pip install python�decouple
�. Create a �le in the SAME folder called .env

6 / 12

Now for dbutils!!
�� Its important to never same passwords in plain text on your machine!! Its best to use environment variables for
this. In the .env �le, add the following information:

db_port=3306
db_host=localhost
db_user=ubuntu
db_pass=0c32348ad0361269b

• db_port : Speci�es the port your MySQL instance is running on: 3306 is the default
• db_host : This is the IP address (remember 127.0.0.1?)
• db_user : The username
• db_pass : The password

The decouple package in python will then pick up these environment variables automatically and can be used as
config('db_port') within scripts.

7 / 12

Now for dbutils!!
Back to our task at hand!

• Read in the property �le in python from the data folder in your project folder.

import polars as pl

df = pl.read_csv('data/property.csv')

df.glimpse()

8 / 12

Now for dbutils!!
Next connect to the DB

import polars as pl
from decouple import config
from dbutils import Query

df = pl.read_csv('data/property.csv')

database = Query(
 db_type = 'mysql',
 db_name = 'workshop',
 db_user = config('db_user'),
 db_pass = config('db_pass'),
 db_host = config('db_host'),
 db_port = config('db_port')
)

database.��version��
database.db_type

9 / 12

Now for dbutils!!
Once you have connected, its always good practice to test the connection:

import polars as pl
from decouple import config
from dbutils import Query

df = pl.read_csv('data/property.csv')

database = Query(
 db_type = 'mysql',
 db_name = 'workshop',
 db_user = config('db_user'),
 db_pass = config('db_pass'),
 db_host = config('db_host'),
 db_port = config('db_port')
)

database.��version��
database.db_type

database.sql_query(sql = "SELECT * FROM property", limits = 2)

10 / 12

Now for dbutils!!
Now that we have established a connection, lets truncate the database and load in the data through python
using the sql_execute method.

database.sql_execute(sql = "TRUNCATE property")

Next, we can upload the data to DB using sql_write :

database.sql_write(df.to_pandas(), table_name = 'property')

11 / 12

Exercises for SQL & Polars
Execute the following command in polars and then use dbutils to execute the commands in sql

• What is the average and standard deviation of house prices?
• How much more expensive is adding an extra bedroom and going from a 2 to 3 bedroom if I RENT?
• Where are the most expensive houses for sale?

12 / 12

40�00

Learning Polars with Python
Section 4

��� import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one�� and preferably only one ��obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than �right� now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea �� let's do more of those!

2 / 46

Building basic
functions �

Modules vs Classes vs Function
Module

In the world of python, a module can be thought of as a collection of functions / Classes that reside within
a ��� package.

Class

Logical abstraction layer to organise certain methods to a speci�c objects. Ex. An object of class bird can
have swim method, but class fish cannot have method fly . We usually use Classes as a blueprint to
easily instantiate new objects with a set structure. These will attributes, which we can access through
methods.

Function

Standalone not associated with any Class (example add(1,2)). Invoke by own name, does not require
self .

1

 Except for those crazy �ying �sh!1

4 / 46

Modules vs Classes vs Function?
x = Person(Name = "Hanjo")

Class

x.jump()

method

show_menu("vegetarian")

function

Connect("greenplum")

Class

5 / 46

Building our
�rst class

The most important!
• What is the most important thing about writing code?

!!!DOCUMENTATION!!!

7 / 46

We start by selecting a style of docstrings. I certainly
prefer writing my code in a more verbose way. So,
with that in mind, I prefer NumPy.

• It is more verbose.
• Plays well with Sphinx doc generator.
• De-facto standard of the larger projects in

python.

Documentating functions in python ���
By learning to write your documentation as you write your code, future you and other people will appreciate and enjoy
working with you (and your code) a lot more.1

If you want to go deep, read up on PEP 257 -- Docstring Conventions1

8 / 46

https://numpydoc.readthedocs.io/en/latest/format.html
https://numpydoc.readthedocs.io/en/latest/format.html
https://www.python.org/dev/peps/pep-0257/#multi-line-docstrings
https://www.python.org/dev/peps/pep-0257/#multi-line-docstrings

What should be documented?
Although there is A LOT of things that can be documented, lets start with the two most basics: Attribute , Methods

• Attributes
◦ Think of these as characteristics of the class.

• Methods
◦ Operations or actions that the class can perform.

When documenting, please be very aware of capital letters, spaces and " : ". All of these things are parsed by our
document parser which you will see later on �������������.

Code is more often read than written.

— Guido van Rossum

9 / 46

class Boilerplate:
"""

 Description of class

 Attributes

 attr_1 : type
 description
 attr_2 : type
 description

 Methods

 method_1(param=None)
 Description
 """

 attr_1 = "Thanks for loading class with {attr_2}"

Take some time and build be a Gorilla class !

What should be documented?

10 / 46

15�00

In python we use the object self to represent the
instance of a class. By using the self keyword we
access the attributes and methods of the class we
created and we use ��init�� to mean the initiator:

class Gorilla:
"""

 A class used to represent a Gorilla

 Attributes

 name : str
 the name of the gorilla
 weight : int
 how much does the gorilla weight in KG
 home: str
 where can the gorilla be found
 age: int
 number of years
 sex: str
 is the gorilla male or female
 hours: int
 how many hours a gorilla sleep

 Methods

 sleep(hours=None)
 How many hours does my gorilla sleep
 """

def ��init��(self, name, weight, age, sex, hours, home = "Viruga"):
 self.name = name
 self.weight = weight
 self.home = home
 self.age = age
 self.sex = sex
 self.hours = hours

My Gorilla Class?

11 / 46

How to add method new class?
def sleep(self, hours = None):

"""
 Tells you how many hours the gorilla sleeps.

 If the argument `hours` isn't passed in, the default Gorilla
 hours is used.

 Parameters

 sleep(hours=None)
 How many hours does my gorilla sleep

 Raises

 NotImplementedError
 If no hour is set for the gorilla or passed in as a
 parameter.
 """

if self.hours is None and hours is None:
raise NotImplementedError("Gorillas need to sleep at some stage in the day!")

 out_hours = self.hours if hours is None else hours
 information = "I am a {sex} gorilla called {name},\nI weight {weight}Kg,\nI am from {home} and \nI love to sleep {hours} hours a day!"
 print(information.format(sex = self.sex, name = self.name, weight = self.weight, home = self.home, hours = out_hours))

What else can a gorilla do?

12 / 46

15�00

mygorilla = Gorilla(name = "hanjo",
 weight = 200,
 age = 20,
 sex = "male",
 hours= 10)

��� mygorilla.sleep(hours = 0)

��� mygorilla.sleep(hours = 12)
I am a male gorilla called hanjo,
I weight 200Kg,
I am from Viruga and
I love to sleep 12 hours a day!

class Gorilla(builtins.object)
 | Gorilla(name, weight, age, sex, hours, home='Viruga')
 |
 | A class used to represent a Gorilla
Attributes
name : str
the name of the gorilla
weight : int
how much does the gorilla weight in KG
home: str
where can the gorilla be found
age: int
number of years
sex: str
is the gorilla male or female
hours: int
how many hours a gorilla sleep
Methods

sleep(hours=None)
How many hours does my gorilla sleep
Methods defined here:
��init��(self, name, weight, age, sex, hours, home='Viruga')
Initialize self. See help(type(self)) for accurate signature.
sleep(self, hours=None)
Tells you how many hours the gorilla sleeps.
If the argument `hours` isn't passed in, the default Gorilla
hours is used.
Parameters

sleep(hours=None)
How many hours does my gorilla sleep
Raises

NotImplementedError
If no hour is set for the gorilla or passed in as a parameter.
--
Data descriptors defined here:
��dict��
dictionary for instance variables (if defined)

Lets now see how we built the Gorilla!

13 / 46

• Continue / Pause F5
• Step Over F10
• Step Into F11
• Step Out Shift+F11
• Restart Ctrl+Shift+F5
• Stop Shift+F5

Debugging
There are going to be moments (100% sure of this), when you will have to deal with a code in one of your pieces of
code. This is when we need going to jump into that function using a debugger and be able to explore the state of the
environment as it is at that point. You can also use the keyboard shortcut Ctrl+Shift+D .

14 / 46

05�00

Its go time
bnrUtils ⛏

Function over form
• Start by building out small functions that do one thing and does this well. To do this, break down the steps for

yourself in graphical format.

To do this, take 10:00 and draft a design in Draw.io for a python package that connects to different databases:

16 / 46

10�00

file:///home/hanjo/Dropbox/01-Briefcase/71Point4/training/training/04-polars_training/sessions/04-Software/slides/www.draw.io
file:///home/hanjo/Dropbox/01-Briefcase/71Point4/training/training/04-polars_training/sessions/04-Software/slides/www.draw.io

DB Write and Query

17 / 46

DB Write and Query

18 / 46

Final Functions
After drawing up some basic functions I also realised that I might want some other utilities that could give me an idea
on table column info etc. So my �nal function package looked like. In this workshop we gonna focus on one method
only - query :

• Class : Query
◦ query

◦ show_tables

◦ table_info

◦ write_to_db

These collection of classes and methods would make up the basic building blocks of my package. In this workshop
today we will focus on MariaDb as our primary DB . Then next week I will assist in expanding the package for in-house
use cases.

Most importantly, we will only use a logger to keep track of processing times. This will become very useful
in production settings!

1

 I would recommend you try the other two methods on your own. It can only bene�t in the long run.1

19 / 46

Putting it all into a package
To put all of your functions into a package, there are some simple steps to follow. Some of them make your life easier,
others are mandatory:

1) Use virtual environments (life) 2) Create a folder where your package will live 3) Create setup.py �le to con�gure
package 4) Create a make �le to build your package 5) Create requirements.txt 6) Create ��init��.py �le 7) Document
the package!

20 / 46

Using environments for package development
At its core, the main purpose of Python virtual environments is to create an isolated environment for Python projects.
This means that each project can have its own dependencies, regardless of what dependencies every other project has.
Its a good way to make sure your namespacing is working correctly.

pip install virtualenv
sudo apt�get install python3-venv

Next create a directory to store your environments, create the virtual environment and activate it:

cd ~
mkdir python�virtual�environments �� cd python�virtual�environments
python3 �m venv bnr_utils
source bnr_utils/bin/activate
deactivate

21 / 46

Create working directory
Its a good idea for you to keep your packages in a single directory. That way you can easily jump between
developments:

cd ~
mkdir �p pythonpkg/dbutils �� cd pythonpkg/dbutils

Finally we can start by creating our setup.py �le. When this �le is present in a folder it gives an indication of the basic
setup requirements as well as some basic information.

22 / 46

Open the folder in VScode and remember to activate
the environment:

This �le has to sit at the root directory and it starts off by
containing basic meta information on the package:

import pathlib
from setuptools import setup, find_packages

HERE = pathlib.Path(��file��).parent

VERSION = '0.1.0'
PACKAGE_NAME = 'dbutils'
AUTHOR = 'Hanjo Odendaal'
AUTHOR_EMAIL = 'hanjo@71point4.com'
URL = 'XXX'

LICENSE = 'MIT'
DESCRIPTION = 'DB Utils Python Package to Connect to Databases'
LONG_DESCRIPTION = (HERE/"README.md").read_text()
LONG_DESC_TYPE = "text/markdown"

Setup.py

23 / 46

Setup.py
Next we start specifying what dependencies the package might have:

INSTALL_REQUIRES = [
"setuptools��47.1.1",
"pandas��1.0.5",
"pytest��6.0.1",
"requests��2.24.0",
"Sphinx��3.2.1",
"sphinx�rtd�theme��0.5.0",
"m2r2��0.2.5",
"sqlalchemy��1.3.20",
"pymysql��1.0.2",
"decouple��3.4.0",
"logger��1.4",
]

24 / 46

Setup.py
Finally we push all this information into the setup function:

setup(name=PACKAGE_NAME,
 version=VERSION,
 description=DESCRIPTION,
 long_description=LONG_DESCRIPTION,
 long_description_content_type=LONG_DESC_TYPE,
 author=AUTHOR,
 license=LICENSE,
 author_email=AUTHOR_EMAIL,
 url=URL,
 install_requires=INSTALL_REQUIRES,
 packages=find_packages()
)

25 / 46

Use bump2version before creating a new release.
#
release:
 python3 setup.py sdist bdist_wheel

import pathlib
from setuptools import setup, find_packages

HERE = pathlib.Path(��file��).parent

VERSION = '0.1.0'
PACKAGE_NAME = 'dbutils'
AUTHOR = 'Hanjo Odendaal'
AUTHOR_EMAIL = 'hanjo@71point4.com'
URL = 'XXX'

LICENSE = 'MIT'
DESCRIPTION = 'DB Utils Python Package to Connect to Databases'
LONG_DESCRIPTION = (HERE/"README.md").read_text()
LONG_DESC_TYPE = "text/markdown"

INSTALL_REQUIRES = [
"setuptools��47.1.1",
"pandas��1.0.5",
"pytest��6.0.1",
"requests��2.24.0",
"Sphinx��3.2.1",
"sphinx�rtd�theme��0.5.0",
"m2r2��0.2.5",
"sqlalchemy��1.3.20",
"pymysql��1.0.2",
"python�decouple��3.5",
"logger��1.4",
]

setup(name=PACKAGE_NAME,
 version=VERSION,
 description=DESCRIPTION,
 long_description=LONG_DESCRIPTION,
 long_description_content_type=LONG_DESC_TYPE,
 author=AUTHOR,
 license=LICENSE,
 author_email=AUTHOR_EMAIL,
 url=URL,
 install_requires=INSTALL_REQUIRES,
 packages=find_packages()
)

Setup.py
What the �nal setup.py �le should look like accompanied by a makefile �le:

26 / 46

pip install �r requirements.txt setuptools��47.1.1
pandas��1.0.5
pytest��6.0.1
requests��2.24.0
Sphinx��3.2.1
sphinx�rtd�theme��0.5.0
m2r2��0.2.5
sqlalchemy��1.3.20
pymysql��1.0.2
logger��1.4
python�decouple��3.5
wheel��0.37.1

Requirements.txt
It is always a nice idea to have a requirements.txt �le in the project. This makes setup of the environment a lot easier
and pip has built in functions to install from these special �les. At the same time you can ensure that the correct
working package version is installed with the package.

27 / 46

Basics done!
What is the �nal ingredient to make this a package?

Files named init.py are used to mark directories on disk as Python package directories.

from .query import Query

This �le should be in the folder where our modules will be stored:

mkdir dbutils �� cd dbutils �� touch ��init��.py

At this point your folder structure should look something like:

.
└── dbutils
 ├── dbutils
 │ └── ��init��.py
 ├── makefile
 ├── requirements.txt
 └── setup.py

2 directories, 4 files

28 / 46

dbutils �����

Writing our main class: Query
In writing my main class, you will see that I am pimping my class quite a lot. The additional sets of information will be
very useful for you to debug, as well as have standard outputs to keep logs when your package goes into production.

Create a �le called Query.py in the dbutils folder and add these two lines:

import logging
from pkg_resources import get_distribution
logging.basicConfig(level=logging.DEBUG)

• This allows me to use logging in throughout my package.
◦ Here I set it to log at the DEBUG level.

• I will always have a variable saved to self to get the version of the package that produced the results.

Take 10min to write the Boilerplate for a class called Query boilerplate

30 / 46

10�00

file:///home/hanjo/Dropbox/01-Briefcase/71Point4/training/training/04-polars_training/sessions/04-Software/slides/04-software.html#31
file:///home/hanjo/Dropbox/01-Briefcase/71Point4/training/training/04-polars_training/sessions/04-Software/slides/04-software.html#31

Writing our main class: Query
import logging
from pkg_resources import get_distribution
logging.basicConfig(level=logging.DEBUG)

class Query():
"""

 Initialization method of the :code:`Query` class.

 Attributes

 db : str
 The name of the database.
 db_host : str
 Host of DB. [USE ENVIRONMENT VARIABLES]
 db_port : str
 Port where DB listening.[USE ENVIRONMENT VARIABLES]
 db_user : str
 Username [USE ENVIRONMENT VARIABLES].
 db_pass : str
 Password. [USE ENVIRONMENT VARIABLES]

 Methods

 Fill this space
 """

def ��init��(self, ��kwargs):
 ��version�� = get_distribution('dbutils').version
 self.db = kwargs["db"]
 self.db_host = kwargs["db_host"]
 self.db_port = kwargs["db_port"]
 self.db_user = kwargs["db_user"]
 self.db_pass = kwargs["db_pass"]

31 / 46

Building the package for shipping
We are �nally ready to test whether our package builds successfully.

The �nal bit of information that is needed to �nalize it all is... you guessed it, more documentation!

So create a README.md you should properly populate this �le to explain what the package does and how it functions. I
am not going to go in detail into markdown in this workshop.

For now make the �le and add a very simple header. In README.md :

Hello

Finally we can test! Navigate to your parent directory where the package lives: /pathtopackage/pythonpkg/

make -C dbutils/

32 / 46

Install package for testing
Having created a setup.py , test the install with pip . In the folder pythonpkg/dbutils :

pip install .

If you have an existing install, and want to ensure package and dependencies are updated use ��upgrade along with
pip :

pip install ��upgrade .

To uninstall (use package name):

pip uninstall dbutils

33 / 46

Building our connector ���������������
It is time to now �nally use our Query class to connect to the database. The connect utility will be the workhorse of the
package and will facilitate the connection between python and which ever database you have.

Create a �le called _utils.py .

import logging
log = logging.getLogger(��name��)
from sqlalchemy import create_engine
import pymysql

def _connect(self, params):
"""Execute query"""

 log.debug(f"Connecting to {self.db_host}")

 db_connection_str = f"mysql�pymysql:��{self.db_user}:{self.db_pass}@localhost/{self.db}"
 db_connection = create_engine(db_connection_str)

return db_connection

1

 I use underscore to denote auxiliary functions OR functions that are suppose to be hidden to user purely because it should not concern the user. Please
don't judge me.

1

34 / 46

Using connector in a module
import pandas as pd
from ._utils import _connect
import logging

log = logging.getLogger(��name��)

def sql_query(self, ��kwargs):
try:

 db_connection = _connect(self, kwargs)

 log.debug(db_connection)
 txt = kwargs['sql']

if "limits" in kwargs:
 txt = txt + f" limit {kwargs['limits']}"
 log.debug(txt)

 df = pd.read_sql_query(txt, con = db_connection)

return(df)

except Exception:
raise

finally:
 db_connection.dispose()

35 / 46

Importing your module into class

from ._sql_query import sql_query

import logging
from pkg_resources import get_distribution
logging.basicConfig(level=logging.DEBUG)

class Query():
"""

 Initialization method of the :code:`Query` class.

 Attributes

 db : str
 The name of the database.
 db_host : str
 Host of DB. [USE ENVIRONMENT VARIABLES]
 db_port : str
 Port where DB listening.[USE ENVIRONMENT VARIABLES]
 db_user : str
 Username [USE ENVIRONMENT VARIABLES].
 db_pass : str
 Password. [USE ENVIRONMENT VARIABLES]

 Methods

 Fill this space
 """

def ��init��(self, ��kwargs):
 ��version�� = get_distribution('dbutils').version
 self.db = kwargs["db"]
 self.db_host = kwargs["db_host"]
 self.db_port = kwargs["db_port"]
 self.db_user = kwargs["db_user"]
 self.db_pass = kwargs["db_pass"]

36 / 46

Using package in a main application
We can test our new package by creating a �le called dev.py and a .env �le.

* .env

• This �le will store all your environment variables that you might not want to expose to the outside world. This
functionality comes from the python�decouple package and is a must when developing code. I will �� your laptop
down if I �nd plain text passwords.
◦ dev.py

• This �le be our little sandbox where we test out certain functionality.
• Once you get more comfortable with software development, you should start writing unit-tests within your code. I

do not cover it today, even though its best practice, purely because of time constraint.

1

 Next time we meet I want to see that all of you have a LastPass account. If you save your passwords in a plain text �le, I will report you to management.1

37 / 46

Using package in a main application
The dev.py �le will be broken down into three distinct sections: (1) Imports, (2) Logger setup and (3) Main:

import logging
from decouple import config
from dbutils import Query
import pandas as pd

def setup_logger():
create logger

 logger = logging.getLogger('dbutils')
logger.setLevel(logging.DEBUG)

 logger.setLevel(logging.INFO)

create console handler and set level to debug
 ch = logging.StreamHandler()
 ch.setLevel(logging.DEBUG)

create formatter
 formatter = logging.Formatter('%(asctime)s [%(levelname)s] %(name)s: %(message)s')

add formatter to ch
 ch.setFormatter(formatter)

add ch to logger
 logger.addHandler(ch)

38 / 46

Using package in a main application
The �nal piece of the script contains our main function:

def main():
 setup_logger()

 database = Query(
 db_type = 'mysql',
 db_name = 'workshop',
 db_user = config('db_user'),
 db_pass = config('db_pass'),
 db_host = config('db_host'),
 db_port = config('db_port')
)

 print(database.sql_query(sql = "SELECT * FROM user", limits = 5))
 print(database.sql_query())

if ��name�� �� '��main��' and ��package�� is None:
 print(f"Running main file {��name��}")
 main()

39 / 46

Using package in a main application
If all went well, you should see:

��� if ��name�� �� '��main��' and ��package�� is None:
��� print(f"Running main file {��name��}")
��� main()
���
Running main file ��main��
 Host User Password ��� is_role default_role max_statement_time
0 localhost root *3CD53EE62F8F7439157DF288B55772A2CA36E60C ��� N 0.0
1 localhost ubuntu *A3167888E0A634C04BFDE00EF3FD267117402DBA ��� N 0.0

[2 rows x 46 columns]

40 / 46

See you in 30min

41 / 46

.
├── Makefile
├── build
├── make.bat
└── source
 ├── _static
 ├── _templates
 ├── conf.py
 └── index.rst

4 directories, 4 files

conf.py

import os
import sys
sys.path.insert(0, os.path.abspath('��'))

extensions = [
'sphinx.ext.autodoc',
'sphinx.ext.viewcode',
'sphinxcontrib.napoleon'

]

Bringing your documentation to life
One of the nice things about documenting your code as you write it, is that once you have �nished, you can use tools
such as Sphinx to automatically build a website document for you!

sudo apt install python�sphinx �y
mkdir docs
cd docs
sphinx�quickstart
pip install sphinxcontrib�napoleon

Then go and edit:

42 / 46

sudo pip intsall sphinx_rtd_theme

Again in conf.py add html_theme =
"sphinx_rtd_theme" . Then the moment of truth:

sphinx�apidoc �o . ��
make html

The �nal step
This last step is purely optional, but I think it makes the project look very professional.

This Sphinx theme was designed to provide a great reader experience for documentation users on both desktop and
mobile devices. This theme is commonly used with projects on Read the Docs but can work with any Sphinx project.
Some more themes

43 / 46

https://sphinx-themes.org/
https://sphinx-themes.org/

sudo pip intsall sphinx_rtd_theme

Again in conf.py add html_theme =
"sphinx_rtd_theme" . Then the moment of truth:

sphinx�apidoc �o . ��
make html

The �nal step
This last step is purely optional, but I think it makes the project look very professional.

This Sphinx theme was designed to provide a great reader experience for documentation users on both desktop and
mobile devices. This theme is commonly used with projects on Read the Docs but can work with any Sphinx project.
Some more themes

44 / 46

https://sphinx-themes.org/
https://sphinx-themes.org/

Be free!

45 / 46

Final task
• You love your new package, but dont always know what tables are available, can you create a new method to bring

back a data frame with the available tables as rows?

import pandas as pd
from sqlalchemy import inspect
from ._utils import _connect
import logging

log = logging.getLogger(��name��)

def sql_show_tables(self, ��kwargs):
try:

 db_connection = _connect(self, kwargs)

 log.debug(db_connection)

 insp = inspect(db_connection)
 table_names = insp.get_table_names()
 out = pd.DataFrame(table_names, columns=['table_names'])

return(out)

except Exception:
raise

finally:
 db_connection.dispose()

46 / 46

